论文标题

使用元强化学习的机器学习任务的图像质量评估

Image quality assessment for machine learning tasks using meta-reinforcement learning

论文作者

Saeed, Shaheer U., Fu, Yunguan, Stavrinides, Vasilis, Baum, Zachary M. C., Yang, Qianye, Rusu, Mirabela, Fan, Richard E., Sonn, Geoffrey A., Noble, J. Alison, Barratt, Dean C., Hu, Yipeng

论文摘要

在本文中,我们将图像质量评估(IQA)视为衡量图像如何相对于给定的下游任务或任务修正性的图像。当使用机器学习算法执行任务时,例如基于神经网络的任务预测器用于图像分类或细分时,任务预测器的性能提供了对任务不适的客观估计。在这项工作中,我们使用iQA控制器来预测任务修正性,该任务自身可以通过神经网络参数化,可以通过任务预测器同时训练。我们进一步开发了一个元加强学习框架,以提高IQA控制器和任务预测指标的适应性,以便它们可以在新的数据集或元任务中有效地进行微调。我们使用两种临床应用在X射线图像上使用了两种临床应用,证明了提出的特定任务特异性IQA方法的功效,使用了两种临床应用。

In this paper, we consider image quality assessment (IQA) as a measure of how images are amenable with respect to a given downstream task, or task amenability. When the task is performed using machine learning algorithms, such as a neural-network-based task predictor for image classification or segmentation, the performance of the task predictor provides an objective estimate of task amenability. In this work, we use an IQA controller to predict the task amenability which, itself being parameterised by neural networks, can be trained simultaneously with the task predictor. We further develop a meta-reinforcement learning framework to improve the adaptability for both IQA controllers and task predictors, such that they can be fine-tuned efficiently on new datasets or meta-tasks. We demonstrate the efficacy of the proposed task-specific, adaptable IQA approach, using two clinical applications for ultrasound-guided prostate intervention and pneumonia detection on X-ray images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源