论文标题

Barcor:建立一个统一的对话推荐系统的框架

BARCOR: Towards A Unified Framework for Conversational Recommendation Systems

论文作者

Wang, Ting-Chun, Su, Shang-Yu, Chen, Yun-Nung

论文摘要

推荐系统着重于帮助用户在信息超载的情况下找到感兴趣的项目,在这种情况下,通常通过观察到的行为估算了用户的偏好。相比之下,会话推荐系统(CRS)旨在通过对话流中的交互来了解用户的偏好。 CRS是一个复杂的问题,包括两个主要任务:(1)建议和(2)响应生成。以前的工作通常试图以模块化的方式解决该问题,在这种情况下,推荐人和响应发生器是单独的神经模型。这种模块化体系结构通常在模块之间具有复杂且不直觉的联系,从而导致学习效率低下和其他问题。在这项工作中,我们提出了一个基于巴特的统一框架,以进行对话推荐,该框架在单个模型中处理了两个任务。此外,我们还设计并收集了电影领域中CRS的轻量级知识图。实验结果表明,所提出的方法在自动和人类评估方面达到了最新的性能。

Recommendation systems focus on helping users find items of interest in the situations of information overload, where users' preferences are typically estimated by the past observed behaviors. In contrast, conversational recommendation systems (CRS) aim to understand users' preferences via interactions in conversation flows. CRS is a complex problem that consists of two main tasks: (1) recommendation and (2) response generation. Previous work often tried to solve the problem in a modular manner, where recommenders and response generators are separate neural models. Such modular architectures often come with a complicated and unintuitive connection between the modules, leading to inefficient learning and other issues. In this work, we propose a unified framework based on BART for conversational recommendation, which tackles two tasks in a single model. Furthermore, we also design and collect a lightweight knowledge graph for CRS in the movie domain. The experimental results show that the proposed methods achieve the state-of-the-art performance in terms of both automatic and human evaluation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源