论文标题

部分可观测时空混沌系统的无模型预测

Odd Grassmannian bimodules and derived equivalences for spin symmetric groups

论文作者

Brundan, Jonathan, Kleshchev, Alexander

论文摘要

我们证明了Chuang和Rouquier在SL(2)分类中的结果的奇数类似物。还结合了Livesey的第二作者的最新作品,这使我们能够完成Broué的Abelian缺陷猜想,以构成对称组的双重掩护。该文章还开发了十年前由埃利斯(Ellis),科瓦诺夫(Khovanov)和劳达(Lauda)发起的奇数对称函数理论。在我们的方法中的一个关键作用是由一个由奇数的grassmannian bimodules组成的超级ger子组成的两类,这是glas骨的同类同胞代数的奇数类似物。这是格拉曼尼亚双模型类别的奇怪类似物,这是劳达独立分类SL(2)独立方法的核心。我们还构建了奇数kac-moody 2类Sl(2)对奇数grassmannian双模模的作用,并用它来给出其非分类的新证明。

We prove odd analogs of results of Chuang and Rouquier on sl(2)-categorification. Combined also with recent work of the second author with Livesey, this allows us to complete the proof of Broué's Abelian Defect Conjecture for the double covers of symmetric groups. The article also develops the theory of odd symmetric functions initiated a decade ago by Ellis, Khovanov and Lauda. A key role in our approach is played by a 2-category consisting of odd Grassmannian bimodules over superalgebras which are odd analogs of equivariant cohomology algebras of Grassmannians. This is the odd analog of the category of Grassmannian bimodules which was at the heart of Lauda's independent approach to categorification of sl(2). We also construct an action of the odd Kac-Moody 2-category of sl(2) on the 2-category of odd Grassmannian bimodules, and use this to give a new proof of its non-degeneracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源