论文标题

图形神经网络的大都市束缚数据扩展

Metropolis-Hastings Data Augmentation for Graph Neural Networks

论文作者

Park, Hyeonjin, Lee, Seunghun, Kim, Sihyeon, Park, Jinyoung, Jeong, Jisu, Kim, Kyung-Min, Ha, Jung-Woo, Kim, Hyunwoo J.

论文摘要

图形神经网络(GNN)通常由于稀疏标记的数据而经常遭受较弱的将来,尽管它们在各种基于图的任务上都有希望的结果。数据增强是一种普遍的补救措施,以提高许多领域模型的概括能力。但是,由于数据空间的非欧盟人性性质和样本之间的依赖性,因此在图上设计有效的增强是具有挑战性的。在本文中,我们提出了一个新颖的框架大都会杂货数据增强(MH-AUG),该数据从明确的目标分布中汲取了增强图,以进行半监督学习。 MH-AUG从目标分布中产生一系列增强图,从而可以灵活控制增强的强度和多样性。由于来自复杂目标分布的直接采样具有挑战性,因此我们采用大都市杂货算法来获取增强样品。我们还提出了一种简单有效的半监督学习策略,并通过MH-AUG产生的样本。我们的广泛实验表明,MH-AUG可以根据目标分布生成一系列样品,以显着提高GNN的性能。

Graph Neural Networks (GNNs) often suffer from weak-generalization due to sparsely labeled data despite their promising results on various graph-based tasks. Data augmentation is a prevalent remedy to improve the generalization ability of models in many domains. However, due to the non-Euclidean nature of data space and the dependencies between samples, designing effective augmentation on graphs is challenging. In this paper, we propose a novel framework Metropolis-Hastings Data Augmentation (MH-Aug) that draws augmented graphs from an explicit target distribution for semi-supervised learning. MH-Aug produces a sequence of augmented graphs from the target distribution enables flexible control of the strength and diversity of augmentation. Since the direct sampling from the complex target distribution is challenging, we adopt the Metropolis-Hastings algorithm to obtain the augmented samples. We also propose a simple and effective semi-supervised learning strategy with generated samples from MH-Aug. Our extensive experiments demonstrate that MH-Aug can generate a sequence of samples according to the target distribution to significantly improve the performance of GNNs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源