论文标题
关于可变的集成性和总结性的空间的反射性
On the reflexivity of the spaces of variable integrability and summability
论文作者
论文摘要
在本文中,我们表明,在条件$ 1 <p_-,q_-,p_+,q _+<\ infty $,space $ \ ell^{q(\ cdot)}(l^{p(\ cdot)})$是反射的。通过这种方式,我们回答了Hästö在2017年提出的有关变量混合Lebesgue-sequence空间的反射性的答案。 这里重要的是指定了$ \ ell^{q(\ cdot)}的双空间(l^{p(\ cdot)})$。作为其直接推论,我们表明相应的besov空间$ b^{s(\ cdot)} _ {p(\ cdot)q(\ cdot)} $是反射性的。
In this paper, we show that under the condition $ 1<p_-, q_-, p_+, q_+<\infty$, the space $\ell^{q(\cdot)} (L^{p(\cdot)})$ is reflexive. In this way we give an answer to open problem posed by Hästö in 2017 about the reflexivity of the variable mixed Lebesgue-sequence spaces $\ell^{q(\cdot)} (L^{p(\cdot)})$. What is important here is that the dual space of $\ell^{q(\cdot)} (L^{p(\cdot)})$ is specified. As its direct corollary, we show that the corresponding Besov space $B^{s(\cdot)}_{p(\cdot)q(\cdot)}$ is reflexive.