论文标题
使用灵活的与理论无关的方法对重力波观测的一般相对性测试
Tests of General Relativity with Gravitational-Wave Observations using a Flexible--Theory-Independent Method
论文作者
论文摘要
我们使用独立于理论的框架从紧凑型二进制的灵感阶段对一般相对性(GR)进行了一般相对论(GR)的测试,该框架在频域中的GR波形模型的每个多极中添加了通用相位校正。该方法已在Ligo-Virgo观察结果上证明,以对牛顿后对灵感的预测进行严格的限制,并评估在这种参数化测试中可能出现的系统偏见。在这里,我们详细介绍了对齐自旋波形模型的框架的解剖结构。我们通过分析两个不等质量的模拟二进制信号,类似于GW190412和GW190814,探索了基础信号中较高模式对GR测试的影响。我们表明,较高模式的包含可以提高偏差参数测量的精度和准确性。我们的测试框架还使我们能够改变基线的基线GR波形模型和非GR Inspiral校正逐渐减少的频率。我们发现,要优化高质量二进制的GR检验,需要进行全面的研究,以确定锥度频率作为二进制特性的函数的最佳选择。我们还对二进制中子明星事件GW170817进行了分析,以在耦合常数$α_0$的Jordan-Fierz-Fierz-Brans-Dicke Gravity上设置边界。我们采用两种合理的方法。在第一个\ emph {theory-agnostic}方法中,我们找到了一种绑定的$α_0\ lyssim 2 \ lisssim 2 \ times 10^{ - 1} $,从测量不同状态中子星的偶极 - 辐射方程式,而第二个\ emph {phodep {theole theole-emph {theologe-emph {theole ot a $ lime ph limssim $ sim $ sim $ sim $ sim 4 \ \%$ $ 1 \ \ \ \ \ \ \ \%$ 68可靠的水平。这些差异主要是由于用于分析的不同统计假设。
We perform tests of General Relativity (GR) with gravitational waves (GWs) from the inspiral stage of compact binaries using a theory-independent framework, which adds generic phase corrections to each multipole of a GR waveform model in frequency domain. This method has been demonstrated on LIGO-Virgo observations to provide stringent constraints on post-Newtonian predictions of the inspiral and to assess systematic biases that may arise in such parameterized tests. Here, we detail the anatomy of our framework for aligned-spin waveform models. We explore the effects of higher modes in the underlying signal on tests of GR through analyses of two unequal-mass, simulated binary signals similar to GW190412 and GW190814. We show that the inclusion of higher modes improves both the precision and the accuracy of the measurement of the deviation parameters. Our testing framework also allows us to vary the underlying baseline GR waveform model and the frequency at which the non-GR inspiral corrections are tapered off. We find that to optimize the GR test of high-mass binaries, comprehensive studies would need to be done to determine the best choice of the tapering frequency as a function of the binary's properties. We also carry out an analysis on the binary neutron-star event GW170817 to set bounds on the coupling constant $α_0$ of Jordan-Fierz-Brans-Dicke gravity. We take two plausible approaches; in the first \emph{theory-agnostic} approach we find a bound $α_0 \lesssim 2\times 10^{-1}$ from measuring the dipole-radiation for different neutron-star equations of state, while in the second \emph{theory-specific} approach we obtain $α_0 \lesssim 4\times 10^{-1}$, both at $68\%$ credible level. These differences arise mainly due to different statistical hypotheses used for the analysis.