论文标题

光谱测量范围的范围

Spectral Measurement Sparsification for Pose-Graph SLAM

论文作者

Doherty, Kevin J., Rosen, David M., Leonard, John J.

论文摘要

同时定位和映射(SLAM)是自主导航中的关键能力,但是为了扩展“终身”大满贯的设置,尤其是在内存或计算约束下,机器人必须能够确定应保留哪些信息以及可以安全遗忘的信息。在基于图形的大满贯中,姿势图中的边缘数(测量)数量确定了存储机器人观察值的内存要求,也确定了使用这些观察结果进行的,用于执行状态估计的算法的计算费用;两者在长期导航期间都可以无限制地生长。为了解决这个问题,我们提出了一种用于姿势图稀疏的光谱方法,该方法最大化了稀疏测量图的代数连接性,该密钥数量已被证明可以控制姿势图SLAM解决方案的估计误差。我们的算法MAC(基于凸放松的“最大化代数连接”)是简单且计算便宜的,并且可以根据其提供的解决方案的质量确保正式的事后性能保证。在基准姿势施加数据集的实验中,我们表明我们的方法迅速产生高质量的稀疏结果,该结果保留了图形的连接性,而与不考虑图形连接性的基线方法相比,相应的SLAM解决方案的质量又是相应的SLAM解决方案的质量。

Simultaneous localization and mapping (SLAM) is a critical capability in autonomous navigation, but in order to scale SLAM to the setting of "lifelong" SLAM, particularly under memory or computation constraints, a robot must be able to determine what information should be retained and what can safely be forgotten. In graph-based SLAM, the number of edges (measurements) in a pose graph determines both the memory requirements of storing a robot's observations and the computational expense of algorithms deployed for performing state estimation using those observations; both of which can grow unbounded during long-term navigation. To address this, we propose a spectral approach for pose graph sparsification which maximizes the algebraic connectivity of the sparsified measurement graphs, a key quantity which has been shown to control the estimation error of pose graph SLAM solutions. Our algorithm, MAC (for "maximizing algebraic connectivity"), which is based on convex relaxation, is simple and computationally inexpensive, and admits formal post hoc performance guarantees on the quality of the solutions it provides. In experiments on benchmark pose-graph SLAM datasets, we show that our approach quickly produces high-quality sparsification results which retain the connectivity of the graph and, in turn, the quality of corresponding SLAM solutions, as compared to a baseline approach which does not consider graph connectivity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源