论文标题

朝着具有可区分编程的粒子物理仪器的端到端优化:白皮书

Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: a White Paper

论文作者

Dorigo, Tommaso, Giammanco, Andrea, Vischia, Pietro, Aehle, Max, Bawaj, Mateusz, Boldyrev, Alexey, Manzano, Pablo de Castro, Derkach, Denis, Donini, Julien, Edelen, Auralee, Fanzago, Federica, Gauger, Nicolas R., Glaser, Christian, Baydin, Atılım G., Heinrich, Lukas, Keidel, Ralf, Kieseler, Jan, Krause, Claudius, Lagrange, Maxime, Lamparth, Max, Layer, Lukas, Maier, Gernot, Nardi, Federico, Pettersen, Helge E. S., Ramos, Alberto, Ratnikov, Fedor, Röhrich, Dieter, de Austri, Roberto Ruiz, del Árbol, Pablo Martínez Ruiz, Savchenko, Oleg, Simpson, Nathan, Strong, Giles C., Taliercio, Angela, Tosi, Mia, Ustyuzhanin, Andrey, Zaraket, Haitham

论文摘要

考虑到几何选择,检测技术,材料,数据实用和信息剥夺技术以及相关参数的相互依存关系的可能选择的空间,其功能依赖于辐射与物质的相互作用的设计和操作的完整优化是一项超人的任务。另一方面,如果与仪器的最终目标完全对齐,通过对配置空间进行系统的搜索,则最大程度地对准了仪器的最终目标,则在我们范围内,“经验驱动”的布局的巨大潜在增长是在我们的范围内。从经典统计的角度来看,所涉及的量子过程的随机性质使这些系统的建模成为棘手的问题,但是构建完全可区分的管道和深度学习技术的使用可能允许同时优化所有设计参数。 在本文档中,我们制定了设计模块化和多功能建模工具的计划,以端到端优化粒子物理实验的复杂仪器,以及共享辐射作为基本成分的辐射检测的工业和医疗应用。我们考虑一组选定的用例,以突出不同应用程序的特定需求。

The full optimization of the design and operation of instruments whose functioning relies on the interaction of radiation with matter is a super-human task, given the large dimensionality of the space of possible choices for geometry, detection technology, materials, data-acquisition, and information-extraction techniques, and the interdependence of the related parameters. On the other hand, massive potential gains in performance over standard, "experience-driven" layouts are in principle within our reach if an objective function fully aligned with the final goals of the instrument is maximized by means of a systematic search of the configuration space. The stochastic nature of the involved quantum processes make the modeling of these systems an intractable problem from a classical statistics point of view, yet the construction of a fully differentiable pipeline and the use of deep learning techniques may allow the simultaneous optimization of all design parameters. In this document we lay down our plans for the design of a modular and versatile modeling tool for the end-to-end optimization of complex instruments for particle physics experiments as well as industrial and medical applications that share the detection of radiation as their basic ingredient. We consider a selected set of use cases to highlight the specific needs of different applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源