论文标题
高维量子机学习与小量子计算机
High Dimensional Quantum Machine Learning With Small Quantum Computers
论文作者
论文摘要
量子计算机具有增强机器学习的巨大希望,但是他们当前的量子计数限制了这一诺言的实现。为了安抚这种限制技术,可以使用量子少于量子的机器来评估量子电路。这些技术通过评估较小的机器上的许多较小的电路来起作用,然后将其组合成多项式以复制较大机器的输出。与通用电路相比,该方案需要更多的电路评估。但是,我们调查了某些应用程序的可能性,许多这些子电路都是多余的,并且总和足以估计全电路。我们构建了一个机器学习模型,该模型可能能够近似较大电路的输出,并进行较少的电路评估。我们使用模拟量子计算机成功地将模型应用于数字识别的任务。该模型还适用于使用模拟访问5量子计算机的随机10量子PQC的任务,即使仅使用相对较少数量的电路我们的模型,我们的模型也可以准确地近似于10 Qubit PQCS输出,而不是神经网络尝试。开发的方法可能对于在整个NISQ时代的较大数据上实现量子模型可能很有用。
Quantum computers hold great promise to enhance machine learning, but their current qubit counts restrict the realisation of this promise. In an attempt to placate this limitation techniques can be applied for evaluating a quantum circuit using a machine with fewer qubits than the circuit naively requires. These techniques work by evaluating many smaller circuits on the smaller machine, that are then combined in a polynomial to replicate the output of the larger machine. This scheme requires more circuit evaluations than are practical for general circuits. However, we investigate the possibility that for certain applications many of these subcircuits are superfluous, and that a much smaller sum is sufficient to estimate the full circuit. We construct a machine learning model that may be capable of approximating the outputs of the larger circuit with much fewer circuit evaluations. We successfully apply our model to the task of digit recognition, using simulated quantum computers much smaller than the data dimension. The model is also applied to the task of approximating a random 10 qubit PQC with simulated access to a 5 qubit computer, even with only relatively modest number of circuits our model provides an accurate approximation of the 10 qubit PQCs output, superior to a neural network attempt. The developed method might be useful for implementing quantum models on larger data throughout the NISQ era.