论文标题
基于PDE的动态控制和软机器人臂的估计
PDE-based Dynamic Control and Estimation of Soft Robotic Arms
论文作者
论文摘要
与传统的刚体机器人相比,软机器人不仅表现出前所未有的适应性和灵活性,而且由于其无限的自由度而在其建模和控制中提出了新颖的挑战。大多数现有方法主要依赖于近似模型,因此可以利用发达的有限维控制理论。但是,这可能会导致建模不确定性和性能降解。因此,我们建议对软机器人系统利用无限维度分析。我们的控制设计基于越来越多的Cosserat Rod模型,该模型使用非线性偏微分方程(PDE)描述了软机器人臂的运动学和动力学。我们为Cosserat PDE模型设计了无限维状态反馈控制定律,以实现轨迹跟踪(由位置,旋转,线性和角速度组成)并证明其均匀的跟踪收敛性。我们还仅使用位置测量值来估计所有状态变量(包括位置,旋转,应变,曲率,线性和角速度)的所有状态变量(包括位置,旋转,应变,曲率,线性和角速度)。使用模拟评估所提出的算法。
Compared with traditional rigid-body robots, soft robots not only exhibit unprecedented adaptation and flexibility but also present novel challenges in their modeling and control because of their infinite degrees of freedom. Most of the existing approaches have mainly relied on approximated models so that the well-developed finite-dimensional control theory can be exploited. However, this may bring in modeling uncertainty and performance degradation. Hence, we propose to exploit infinite-dimensional analysis for soft robotic systems. Our control design is based on the increasingly adopted Cosserat rod model, which describes the kinematics and dynamics of soft robotic arms using nonlinear partial differential equations (PDE). We design infinite-dimensional state feedback control laws for the Cosserat PDE model to achieve trajectory tracking (consisting of position, rotation, linear and angular velocities) and prove their uniform tracking convergence. We also design an infinite-dimensional extended Kalman filter on Lie groups for the PDE system to estimate all the state variables (including position, rotation, strains, curvature, linear and angular velocities) using only position measurements. The proposed algorithms are evaluated using simulations.