论文标题

通过布尔网络中的陷阱空间标识节点和边缘控制策略

Node and edge control strategy identification via trap spaces in Boolean networks

论文作者

Cifuentes-Fontanals, Laura, Tonello, Elisa, Siebert, Heike

论文摘要

生物系统控制机制的研究允许在生物工程和医学中进行有趣的应用,例如在细胞重编程或药物靶标识别中。控制策略通常由一组干预措施组成,这些干预措施通过固定某些组件的值,确保受控系统的长期动力学处于期望状态。在布尔框架中进行控制的一种常见方法是检查固定值如何通过网络传播,以确定渗透干预措施的效果是否足以诱导目标状态。尽管基于价值渗透的唯一方法可以进行有效的计算,但它们可能会错过许多控制策略。另一方面,详尽的控制策略识别方法通常需要高度的计算成本。为了增加在有效实施中仍受益的同时确定的控制策略的数量,我们引入了一种基于价值渗透的方法,该方法使用陷阱空间,与动态有关的状态空间的子空间,通常可以在生物网络中轻松计算。该方法允许节点干预措施,该干预措施可以修复某些组件的值和边缘干预措施,从而固定一个组件对另一个组件的效果。该方法是使用答案集编程实现的,从而扩展了现有的有效实现值渗透,以允许使用陷阱空间和边缘控制。在生物学案例研究中,研究了该方法的适用性,用于不同的控制靶标,在所有情况下都确定了新的控制策略,这些策略将避免通常基于渗透的方法。

The study of control mechanisms of biological systems allows for interesting applications in bioengineering and medicine, for instance in cell reprogramming or drug target identification. A control strategy often consists of a set of interventions that, by fixing the values of some components, ensure that the long term dynamics of the controlled system is in a desired state. A common approach to control in the Boolean framework consists in checking how the fixed values propagate through the network, to establish whether the effect of percolating the interventions is sufficient to induce the target state. Although methods based uniquely on value percolation allow for efficient computation, they can miss many control strategies. Exhaustive methods for control strategy identification, on the other hand, often entail high computational costs. In order to increase the number of control strategies identified while still benefiting from an efficient implementation, we introduce a method based on value percolation that uses trap spaces, subspaces of the state space that are closed with respect to the dynamics, and that can usually be easily computed in biological networks. The approach allows for node interventions, which fix the value of certain components, and edge interventions, which fix the effect that one component has on another. The method is implemented using Answer Set Programming, extending an existing efficient implementation of value percolation to allow for the use of trap spaces and edge control. The applicability of the approach is studied for different control targets in a biological case study, identifying in all cases new control strategies that would escape usual percolation-based methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源