论文标题

3D gan倒置用于可控肖像图像动画

3D GAN Inversion for Controllable Portrait Image Animation

论文作者

Lin, Connor Z., Lindell, David B., Chan, Eric R., Wetzstein, Gordon

论文摘要

每天都会捕获数百万人脸的图像。但是,这些照片描绘了一个人的形象,具有固定的姿势,表达和外观。肖像图像动画可以从单个图像中对这些属性进行捕获后调整,同时维持对受试者的相似性或身份的感性重建。尽管如此,当前的肖像图像动画方法通常是基于2D翘曲操作或对2D生成对抗网络(GAN)的操作,并且缺乏明确的机制来执行多视图一致性。因此,这些方法可能会显着改变主题的身份,尤其是当相对于相机的观点更改时。在这项工作中,我们利用了新开发的3D GAN,可以明确控制具有多视图一致性的图像主题的姿势。我们提出了一种监督策略,以灵活地使用3D形态模型来操纵表达式,我们表明该提出的方法还通过在GAN的潜在空间中插值来支持编辑外观属性,例如年龄或发型。肖像图像动画的提议技术在图像质量,身份保存和姿势转移方面优于先前的方法,同时还支持属性编辑。

Millions of images of human faces are captured every single day; but these photographs portray the likeness of an individual with a fixed pose, expression, and appearance. Portrait image animation enables the post-capture adjustment of these attributes from a single image while maintaining a photorealistic reconstruction of the subject's likeness or identity. Still, current methods for portrait image animation are typically based on 2D warping operations or manipulations of a 2D generative adversarial network (GAN) and lack explicit mechanisms to enforce multi-view consistency. Thus these methods may significantly alter the identity of the subject, especially when the viewpoint relative to the camera is changed. In this work, we leverage newly developed 3D GANs, which allow explicit control over the pose of the image subject with multi-view consistency. We propose a supervision strategy to flexibly manipulate expressions with 3D morphable models, and we show that the proposed method also supports editing appearance attributes, such as age or hairstyle, by interpolating within the latent space of the GAN. The proposed technique for portrait image animation outperforms previous methods in terms of image quality, identity preservation, and pose transfer while also supporting attribute editing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源