论文标题

视频实例通过多尺度时空分开注意变压器进行分割

Video Instance Segmentation via Multi-scale Spatio-temporal Split Attention Transformer

论文作者

Thawakar, Omkar, Narayan, Sanath, Cao, Jiale, Cholakkal, Hisham, Anwer, Rao Muhammad, Khan, Muhammad Haris, Khan, Salman, Felsberg, Michael, Khan, Fahad Shahbaz

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

State-of-the-art transformer-based video instance segmentation (VIS) approaches typically utilize either single-scale spatio-temporal features or per-frame multi-scale features during the attention computations. We argue that such an attention computation ignores the multi-scale spatio-temporal feature relationships that are crucial to tackle target appearance deformations in videos. To address this issue, we propose a transformer-based VIS framework, named MS-STS VIS, that comprises a novel multi-scale spatio-temporal split (MS-STS) attention module in the encoder. The proposed MS-STS module effectively captures spatio-temporal feature relationships at multiple scales across frames in a video. We further introduce an attention block in the decoder to enhance the temporal consistency of the detected instances in different frames of a video. Moreover, an auxiliary discriminator is introduced during training to ensure better foreground-background separability within the multi-scale spatio-temporal feature space. We conduct extensive experiments on two benchmarks: Youtube-VIS (2019 and 2021). Our MS-STS VIS achieves state-of-the-art performance on both benchmarks. When using the ResNet50 backbone, our MS-STS achieves a mask AP of 50.1 %, outperforming the best reported results in literature by 2.7 % and by 4.8 % at higher overlap threshold of AP_75, while being comparable in model size and speed on Youtube-VIS 2019 val. set. When using the Swin Transformer backbone, MS-STS VIS achieves mask AP of 61.0 % on Youtube-VIS 2019 val. set. Our code and models are available at https://github.com/OmkarThawakar/MSSTS-VIS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源