论文标题

实时热力计的基于物理学的参数热力学学习

Physics-based Learning of Parameterized Thermodynamics from Real-time Thermography

论文作者

El-Kebir, Hamza, Lee, Yongseok, Bentsman, Joseph

论文摘要

长期以来,由于难以获得高保真热力学模型的困难,对热过程的自动控制和热渗透到活组织的实时估计的进展一直受到限制。传统上,在复杂的热力学系统中,通常是不可行的,可以估计时空变化过程的热物理参数,从而迫使采用无模型的控制体系结构。这是以失去任何鲁棒性保证为代价的,这意味着需要进行广泛的现实测试。然而,近年来,红外摄像机和其他热力计设备已经很容易适用于这些过程,从而可以实时,无创的方法来感知过程的热状态。在这项工作中,我们提出了一种基于物理学的新方法,可以直接从这种实时热量数据中学习热过程的动力学,同时将注意力集中在具有较高热活动的区域上。我们称此过程适用于任何高维标量场,基于注意力的噪声平均(ANRA)。给定部分差异方程模型结构,我们表明我们的方法是可靠的,可以抵抗噪声,可用于初始化优化例程以进一步完善参数估计。我们在几个仿真示例中演示了我们的方法,并通过将其应用于体内猪皮肤组织中的电外科热反应数据。

Progress in automatic control of thermal processes and real-time estimation of heat penetration into live tissue has long been limited by the difficulty of obtaining high-fidelity thermodynamic models. Traditionally, in complex thermodynamic systems, it is often infeasible to estimate the thermophysical parameters of spatiotemporally varying processes, forcing the adoption of model-free control architectures. This comes at the cost of losing any robustness guarantees, and implies a need for extensive real-life testing. In recent years, however, infrared cameras and other thermographic equipment have become readily applicable to these processes, allowing for a real-time, non-invasive means of sensing the thermal state of a process. In this work, we present a novel physics-based approach to learning a thermal process's dynamics directly from such real-time thermographic data, while focusing attention on regions with high thermal activity. We call this process, which applies to any higher-dimensional scalar field, attention-based noise robust averaging (ANRA). Given a partial-differential equation model structure, we show that our approach is robust against noise, and can be used to initialize optimization routines to further refine parameter estimates. We demonstrate our method on several simulation examples, as well as by applying it to electrosurgical thermal response data on in vivo porcine skin tissue.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源