论文标题
Schur模块的GL-Equivariant复合物诱导性格身份
A GL-Equivariant Complex Inducing Character Identities for Schur Modules
论文作者
论文摘要
在本文中,我们构建了一个正面特征环上的Schur模块的GL-等级复合物,该复合物可用于推断Schur多项式的经典交替总和身份。这个复杂的矢量捆绑包全球化,也可以用来对特定方案$ x $的代数K理论上的Grayson的工作进行明确的构造,该序列由Grayson的工作涉及Adams操作身份所预测的精确序列。更一般的综合体提供了一种明确的结构,该结构以完全一般性依靠上述ADAMS操作身份。
In this paper we construct a GL-equivariant complex of Schur modules over a ring of positive characteristic that can be used to deduce classical alternating sum identities for Schur polynomials. This complex globalizes to a complex of vector bundles and can also be used to give an explicit construction of an exact sequence predicted by work of Grayson involving Adams operations identities on the algebraic K-theory of a given scheme $X$. The more general complex gives an explicit construction that reproves the aforementioned Adams operations identities in full generality.