论文标题

几何形状足以在视觉定位中匹配吗?

Is Geometry Enough for Matching in Visual Localization?

论文作者

Zhou, Qunjie, Agostinho, Sérgio, Osep, Aljosa, Leal-Taixé, Laura

论文摘要

在本文中,我们建议超越建立的基于视觉的本地化方法,该方法依赖于查询图像和3D点云之间的视觉描述符匹配。尽管通过视觉描述符匹配关键点使本地化高度准确,但它具有重大的存储需求,引起了隐私问题,并需要长期对描述符进行更新。为了优雅地应对大规模本地化的实用挑战,我们提出了Gomatch,这是基于视觉的匹配的替代方案,它仅依赖于将图像关键点匹配到地图的几何信息,该信息表示为轴承矢量集。我们的新型轴承矢量表示3D点,可显着缓解基于几何的匹配中的跨模式挑战,这阻止了先前的工作在现实环境中解决本地化。借助其他仔细的建筑设计,Gomatch在先前的基于几何的匹配工作中提高了(1067m,95.7摄氏度)和(143万)和(143m,34.7摄氏度)的平均中位数姿势在剑桥地标和7个尺寸上的误差,而与最佳视觉匹配的匹配方法相比,剑桥地标和7个尺寸的储存能力少于1.5/1.7/1.7%。这证实了其对现实世界本地化的潜力和可行性,并为不需要存储视觉描述符的城市级视觉定位方法打开了未来努力的大门。

In this paper, we propose to go beyond the well-established approach to vision-based localization that relies on visual descriptor matching between a query image and a 3D point cloud. While matching keypoints via visual descriptors makes localization highly accurate, it has significant storage demands, raises privacy concerns and requires update to the descriptors in the long-term. To elegantly address those practical challenges for large-scale localization, we present GoMatch, an alternative to visual-based matching that solely relies on geometric information for matching image keypoints to maps, represented as sets of bearing vectors. Our novel bearing vectors representation of 3D points, significantly relieves the cross-modal challenge in geometric-based matching that prevented prior work to tackle localization in a realistic environment. With additional careful architecture design, GoMatch improves over prior geometric-based matching work with a reduction of (10.67m,95.7deg) and (1.43m, 34.7deg) in average median pose errors on Cambridge Landmarks and 7-Scenes, while requiring as little as 1.5/1.7% of storage capacity in comparison to the best visual-based matching methods. This confirms its potential and feasibility for real-world localization and opens the door to future efforts in advancing city-scale visual localization methods that do not require storing visual descriptors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源