论文标题

聚焦和检测:空中图像的小物体检测框架

Focus-and-Detect: A Small Object Detection Framework for Aerial Images

论文作者

Koyun, Onur Can, Keser, Reyhan Kevser, Akkaya, İbrahim Batuhan, Töreyin, Behçet Uğur

论文摘要

尽管最近进步,但航行图像中的对象检测仍然是一项具有挑战性的任务。航空图像中的特定问题使检测问题更加困难,例如小物体,密集包装的对象,不同尺寸和不同方向的对象。为了解决小对象检测问题,我们提出了一个称为“焦点和检测”的两阶段对象检测框架。由高斯混合模型监督的对象检测器网络组成的第一阶段,生成构成聚焦区域的对象群。第二阶段也是对象检测器网络,可以预测焦点区域内的对象。还提出了不完整的盒子抑制(IBS)方法来克服区域搜索方法的截断效应。结果表明,拟议的两阶段框架在Vistrone验证数据集上达到42.06的AP得分,超过了文献中报告的所有其他最新的小对象检测方法,据作者所知。

Despite recent advances, object detection in aerial images is still a challenging task. Specific problems in aerial images makes the detection problem harder, such as small objects, densely packed objects, objects in different sizes and with different orientations. To address small object detection problem, we propose a two-stage object detection framework called "Focus-and-Detect". The first stage which consists of an object detector network supervised by a Gaussian Mixture Model, generates clusters of objects constituting the focused regions. The second stage, which is also an object detector network, predicts objects within the focal regions. Incomplete Box Suppression (IBS) method is also proposed to overcome the truncation effect of region search approach. Results indicate that the proposed two-stage framework achieves an AP score of 42.06 on VisDrone validation dataset, surpassing all other state-of-the-art small object detection methods reported in the literature, to the best of authors' knowledge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源