论文标题
多项式时间中无水平的加固学习:固定政策的力量
Horizon-Free Reinforcement Learning in Polynomial Time: the Power of Stationary Policies
论文作者
论文摘要
本文为表格马尔可夫决策过程(MDP)提供了第一个多项式时间算法,该算法享受了遗憾的\ emph {独立于计划范围}。具体来说,我们考虑具有$ S $州的表格MDP,$ A $ ACTICY,计划范围$ h $,总奖励为$ 1 $,代理商播放$ k $ evipodes。 We design an algorithm that achieves an $O\left(\mathrm{poly}(S,A,\log K)\sqrt{K}\right)$ regret in contrast to existing bounds which either has an additional $\mathrm{polylog}(H)$ dependency~\citep{zhang2020reinforcement} or has an exponential dependency on $ s $〜\ citep {li2021settling}。我们的结果取决于一系列新的结构引理,以建立固定策略的近似能力,稳定性和浓度特性,这些策略可以在与马尔可夫链有关的其他问题中应用。
This paper gives the first polynomial-time algorithm for tabular Markov Decision Processes (MDP) that enjoys a regret bound \emph{independent on the planning horizon}. Specifically, we consider tabular MDP with $S$ states, $A$ actions, a planning horizon $H$, total reward bounded by $1$, and the agent plays for $K$ episodes. We design an algorithm that achieves an $O\left(\mathrm{poly}(S,A,\log K)\sqrt{K}\right)$ regret in contrast to existing bounds which either has an additional $\mathrm{polylog}(H)$ dependency~\citep{zhang2020reinforcement} or has an exponential dependency on $S$~\citep{li2021settling}. Our result relies on a sequence of new structural lemmas establishing the approximation power, stability, and concentration property of stationary policies, which can have applications in other problems related to Markov chains.