论文标题

LHNN:用于VLSI拥塞预测的晶格超图神经网络

LHNN: Lattice Hypergraph Neural Network for VLSI Congestion Prediction

论文作者

Wang, Bowen, Shen, Guibao, Li, Dong, Hao, Jianye, Liu, Wulong, Huang, Yu, Wu, Hongzhong, Lin, Yibo, Chen, Guangyong, Heng, Pheng Ann

论文摘要

放置解决方案的精确拥塞预测在电路放置中起着至关重要的作用。这项工作提出了晶格超图(LH-graph),这是一种新型电路的图形公式,该图表在整个学习过程中保留了NetList数据,并启用了拥塞信息,以几何和拓扑传播。基于该公式,我们进一步开发了一个异质图神经网络体系结构LHNN,从而将路由需求回归构成以支持拥塞点分类。与U-NET和F1分数相比,LHNN不断提高35%以上。我们预计我们的工作将使用机器学习进行拥塞预测强调基本程序。

Precise congestion prediction from a placement solution plays a crucial role in circuit placement. This work proposes the lattice hypergraph (LH-graph), a novel graph formulation for circuits, which preserves netlist data during the whole learning process, and enables the congestion information propagated geometrically and topologically. Based on the formulation, we further developed a heterogeneous graph neural network architecture LHNN, jointing the routing demand regression to support the congestion spot classification. LHNN constantly achieves more than 35% improvements compared with U-nets and Pix2Pix on the F1 score. We expect our work shall highlight essential procedures using machine learning for congestion prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源