论文标题

Zoomer:通过感兴趣的区域在网络尺度图上提高检索

ZOOMER: Boosting Retrieval on Web-scale Graphs by Regions of Interest

论文作者

Jiang, Yuezihan, Cheng, Yu, Zhao, Hanyu, Zhang, Wentao, Miao, Xupeng, He, Yu, Wang, Liang, Yang, Zhi, Cui, Bin

论文摘要

我们介绍了在中国最大的电子商务平台TAOBAO部署的系统Zoomer,用于培训并提供基于GNN的建议,以对网络规模的图表进行基于GNN的建议。 Zoomer旨在应对TAOBAO大量用户数据提出的两个挑战:由于图的范围很大,培训/服务效率低下,并且由于信息过载而引起的低推荐质量,这使建议模型分散了特定用户意图的注意力。 Zoomer通过在GNNS中引入关键概念(ROI)来实现这一目标,以寻求建议,即图表中的邻里区域与强大的用户意图有着显着相关性。 Zoomer缩小了整个图表的焦点,并在更相关的ROI上“放大”,从而降低了培训/服务成本并同时减轻信息过载。通过精心设计的机制,Zoomer确定了每个建议请求所表达的兴趣,通过对利息进行采样来构建ROI子图,并指导GNN通过多级别的注意模块将ROI的不同部分重新升级到利益。 Zoomer被部署为大规模分布式系统,支持具有数十亿个节点的培训和每秒数成千上万的请求的图形。当缩减比基线方法的AUC性能(甚至更好)的AUC性能时,变焦剂可实现高达14倍的速度。此外,离线评估和在线A/B测试都证明了变焦的有效性。

We introduce ZOOMER, a system deployed at Taobao, the largest e-commerce platform in China, for training and serving GNN-based recommendations over web-scale graphs. ZOOMER is designed for tackling two challenges presented by the massive user data at Taobao: low training/serving efficiency due to the huge scale of the graphs, and low recommendation quality due to the information overload which distracts the recommendation model from specific user intentions. ZOOMER achieves this by introducing a key concept, Region of Interests (ROI) in GNNs for recommendations, i.e., a neighborhood region in the graph with significant relevance to a strong user intention. ZOOMER narrows the focus from the whole graph and "zooms in" on the more relevant ROIs, thereby reducing the training/serving cost and mitigating the information overload at the same time. With carefully designed mechanisms, ZOOMER identifies the interest expressed by each recommendation request, constructs an ROI subgraph by sampling with respect to the interest, and guides the GNN to reweigh different parts of the ROI towards the interest by a multi-level attention module. Deployed as a large-scale distributed system, ZOOMER supports graphs with billions of nodes for training and thousands of requests per second for serving. ZOOMER achieves up to 14x speedup when downsizing sampling scales with comparable (even better) AUC performance than baseline methods. Besides, both the offline evaluation and online A/B test demonstrate the effectiveness of ZOOMER.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源