论文标题

使用矩阵产品状态保护受矩阵产品操作员对称性保护的阶段

Classifying phases protected by matrix product operator symmetries using matrix product states

论文作者

Garre-Rubio, José, Lootens, Laurens, Molnár, András

论文摘要

我们对矩阵产品运算符(MPO)对称性的作用进行矩阵产品状态(MPS)的不同方式分类。这是通过局部表征来实现的,该局部表征在全局MPO对称性下,产生地面空间的MPS如何保持不变。该表征产生了满足五角大楼方程的一组数量,与融合类别的模块类别相关联,该类别描述了MPO对称性。这些数量的等效类别为MPO对称阶段提供了完整的不变性:在MPS张量的连续变形下它们是可靠的,并且具有相同等价类别类别的两个阶段可以通过对称间隙路径连接。我们的技术匹配并扩展已知的重新归一化固定点分类,并促进这些系统的数值研究。对于一个组描述的MPO对称性,我们为独特和退化的基础状态恢复了对称性受保护的拓扑级分类。此外,我们研究了时间逆转对称性与MPO对称性之间的相互作用,还提供了分类的示例,以及基于组的显式结构。最后,我们详细介绍了二维拓扑系统的设置和差距之间的连接,其中MPO对称也起着关键作用。

We classify the different ways in which matrix product states (MPSs) can stay invariant under the action of matrix product operator (MPO) symmetries. This is achieved through a local characterization of how the MPSs, that generate a ground space, remain invariant under a global MPO symmetry. This characterization yields a set of quantities satisfying the coupled pentagon equations, associated with a module category over the fusion category that describes the MPO symmetry. Equivalence classes of these quantities provide complete invariants for an MPO symmetry protected phase: they are robust under continuous deformations of the MPS tensor, and two phases with the same equivalence class can be connected by a symmetric gapped path. Our techniques match and extend the known renormalization fixed point classifications and facilitate the numerical study of these systems. For MPO symmetries described by a group, we recover the symmetry protected topological order classification for unique and degenerate ground states. Moreover, we study the interplay between time reversal symmetry and an MPO symmetry and we also provide examples of our classification, together with explicit constructions based on groups. Finally, we elaborate on the connection between our setup and gapped boundaries of two-dimensional topological systems, where MPO symmetries also play a key role.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源