论文标题
在周期性的Anderson-Bernoulli模型上
On the Spectrum of the Periodic Anderson-Bernoulli Model
论文作者
论文摘要
我们分析了离散的Schrodinger操作员的光谱,其潜力由Anderson模型的周期性变体给出。为此,我们研究了由SL(2,R)转移矩阵产生的Schrodinger杂志的均匀双曲线。在由随机值的交替序列产生的特定情况下,我们表明,几乎确定的频谱最多包含4个间隔。
We analyze the spectrum of a discrete Schrodinger operator with a potential given by a periodic variant of the Anderson Model. In order to do so, we study the uniform hyperbolicity of a Schrodinger cocycle generated by the SL(2,R) transfer matrices. In the specific case of the potential generated by an alternating sequence of random values we show that the almost sure spectrum consists of at most 4 intervals.