论文标题

缝合分解和瑟斯顿规范中的胆量

Guts in Sutured Decompositions and the Thurston Norm

论文作者

Agol, Ian, Zhang, Yue

论文摘要

我们构建了一个名为“胆量”的不变式,用于具有托拉尔边界和非脱位瑟斯顿标准的不可约3个manifolds中的第二个同源类。我们证明,每个瑟斯顿锥体中的第二个同源性类别的胆量在自然状态下都是不变的。我们表明,不同同源性类别的胆量与缝合分解有关。作为应用程序,给出了一个不变的补充,并在一些有趣的情况下计算。此外,我们表明,在kakimizu综合体中最大单纯形的尺寸是不变的。

We construct an invariant called guts for second homology classes in irreducible 3-manifolds with toral boundary and non-degenerate Thurston norm. We prove that the guts of second homology classes in each Thurston cone are invariant under a natural condition. We show that the guts of different homology classes are related by sutured decompositions. As an application, an invariant of knot complements is given and is computed in a few interesting cases. Besides, we show that the dimension of a maximal simplex in a Kakimizu Complex is an invariant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源