论文标题
现实的星系图像和改善了来自生成建模的机器学习任务的鲁棒性
Realistic galaxy images and improved robustness in machine learning tasks from generative modelling
论文作者
论文摘要
我们检查了生成模型产生逼真的星系图像的能力。我们表明,将生成的数据与原始数据混合可以改善下游机器学习任务的鲁棒性。我们专注于三个不同的数据集; Illustristng仿真中,分析性的曲线,宇宙调查中的真实星系以及用裙子代码产生的星系图像。我们使用Wasserstein距离(例如Gini-Coeffity,不对称性和椭圆度),各种尺度上的表面亮度分布(由功率 - 光谱编码)(由功率 - 光谱)(由功率 - 光谱),生成和源数据集的颜色量化了每个生成模型的性能(例如,Gini-coeffider,不对称性和椭圆度)。平均瓦斯坦斯坦距离(Fréchet成立距离)为$ 7.19 \ times 10^{ - 2} \,(0.55)$,$ 5.98 \ times 10^{ - 2} \,(1.45)$和$ 5.08 \ $ 5.08 \ times 10^{ - 2} { - 2}} \,(7.76)$ for我们令人信服地复制了最复杂的星系属性,并创建与源数据无法视觉区分的图像。我们证明,通过用生成的数据补充培训数据集,可以显着提高针对域移位和分布数据的鲁棒性。特别是,我们训练一个卷积神经网络,以确定模拟观察的数据集。通过将生成的图像混合到原始培训数据中,我们分别在物理像素大小和背景噪声水平的域换档的模型性能中获得了11美元和45%的改善。
We examine the capability of generative models to produce realistic galaxy images. We show that mixing generated data with the original data improves the robustness in downstream machine learning tasks. We focus on three different data sets; analytical Sérsic profiles, real galaxies from the COSMOS survey, and galaxy images produced with the SKIRT code, from the IllustrisTNG simulation. We quantify the performance of each generative model using the Wasserstein distance between the distributions of morphological properties (e.g. the Gini-coefficient, the asymmetry, and ellipticity), the surface brightness distribution on various scales (as encoded by the power-spectrum), the bulge statistic and the colour for the generated and source data sets. With an average Wasserstein distance (Fréchet Inception Distance) of $7.19 \times 10^{-2}\, (0.55)$, $5.98 \times 10^{-2}\, (1.45)$ and $5.08 \times 10^{-2}\, (7.76)$ for the Sérsic, COSMOS and SKIRT data set, respectively, our best models convincingly reproduce even the most complicated galaxy properties and create images that are visually indistinguishable from the source data. We demonstrate that by supplementing the training data set with generated data, it is possible to significantly improve the robustness against domain-shifts and out-of-distribution data. In particular, we train a convolutional neural network to denoise a data set of mock observations. By mixing generated images into the original training data, we obtain an improvement of $11$ and $45$ per cent in the model performance regarding domain-shifts in the physical pixel size and background noise level, respectively.