论文标题

具有Neumann边界条件的广义临界Kirchhoff型潜力系统

Generalized critical Kirchhoff-type potential systems With Neumann Boundary conditions

论文作者

Eddine, Nabil Chems, Ragusa, Maria Alessandra

论文摘要

在本文中,我们考虑了具有Neumann边界条件的一类准线性固定的Kirchhoff型潜在系统,该系统涉及具有临界增长的一般可变指数椭圆算子。在非线性的一些适当条件下,我们通过使用[5,7]中发现的可变指数的雄狮的浓度 - 牵引力原理来建立问题的存在和多样性,并且山间通过了没有[43]中给出的palais-smale条件。

In this paper, we consider a class of quasilinear stationary Kirchhoff type potential systems with Neumann Boundary conditions, which involves a general variable exponent elliptic operator with critical growth. Under some suitable conditions on the nonlinearities, we establish existence and multiplicity of solutions for the problem by using the concentration-compactness principle of Lions for variable exponents found in [5, 7] and the Mountain Pass Theorem without the Palais-Smale condition given in [43].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源