论文标题

使用MLP分类器和LPCC代码簿的扬声器识别

Speaker recognition with a MLP classifier and LPCC codebook

论文作者

Rodriguez-Porcheron, Daniel, Faundez-Zanuy, Marcos

论文摘要

本文使用两种方法之间的线性组合,仅将MLP分类器和LPCC代码手册的扬声器识别率提高。在模拟中,我们获得了32个矢量的LPCC代码书的4.7%和128个矢量的代码书(错误率从3.68%下降到2.1%)。另外,我们提出了一种有效的算法,该算法将LPCC-VQ系统的计算复杂性降低了4倍。

This paper improves the speaker recognition rates of a MLP classifier and LPCC codebook alone, using a linear combination between both methods. In simulations we have obtained an improvement of 4.7% over a LPCC codebook of 32 vectors and 1.5% for a codebook of 128 vectors (error rate drops from 3.68% to 2.1%). Also we propose an efficient algorithm that reduces the computational complexity of the LPCC-VQ system by a factor of 4.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源