论文标题
分区及其应用的第二个转移差异
The second shifted difference of partitions and its applications
论文作者
论文摘要
许多最近的论文估计了分区功能$ p(n-j)/p(n)$的比率,这些比率出现在许多应用程序中。在这里,我们证明了这些比率易于使用的有效限制。然后,我们研究了分区的第二个转移差异,$ f(j,n):= p(n)-2p(n-j) +p(n-2j)$,并给出$ f(j,n)$的另一个易于使用的估算。作为这些应用程序,我们证明了$ p(n)$的转移属性属性,并给出了$ k $ rank分区函数$ n_k(m,n)$和非$ k $ - $ y-ary分区的新估计。
A number of recent papers have estimated ratios of the partition function $p(n-j)/p(n)$, which appears in many applications. Here, we prove an easy-to-use effective bound on these ratios. Using this, we then study second shifted difference of partitions, $f(j,n):= p(n) -2p(n-j) +p(n-2j)$, and give another easy-to-use estimate of $f(j,n)$. As applications of these, we prove a shifted convexity property of $p(n)$, as well as giving new estimates of the $k$-rank partition function $N_k(m,n)$ and non-$k$-ary partitions along with their differences.