论文标题

Silverman课程足够的条件和半径问题

Sufficient conditions and radius problems for the Silverman class

论文作者

Kumar, S. Sivaprasad, Goel, Priyanka

论文摘要

对于$ 0 <α\ leq1 $和$λ> 0,$ let \ begin {equination} \ label {1} g_ {λ,α} = \ left \ {f \ in \ mathcal {a}:\ left | \ dfrac {1-α+αzf''(z)/f'(z)/f'(z)} {zf'(z) \ end {等式}由Tuneski和Irnak引入的Silverman类的一般形式。对于此类,我们以差异不平等的形式得出了一些足够的条件。此外,我们考虑\ begin {equation} \ label {omega}的类$ω,$ ω= \ left \ {f \ in \ Mathcal {a}:| zf'(z)-f(z)-f(z)| <\ dfrac {1} {2} {2},\; z \ in \ in \ mathbb {d} \ right \}。 \ end {equation}对于上述两个类,我们建立了涉及$ \ Mathcal {s}^*$的其他知名子类的包容关系,并找到涉及这些类别的不同对的半径估计值。

For $0<α\leq1$ and $λ>0,$ let \begin{equation}\label{1} G_{λ,α}=\left\{f\in\mathcal{A}:\left|\dfrac{1-α+αzf''(z)/f'(z)}{zf'(z)/f(z)}-(1-α)\right|<λ, z\in\mathbb{D}\right\}, \end{equation} the general form of Silverman class introduced by Tuneski and Irnak. For this class we derive some sufficient conditions in the form of differential inequalities. Further, we consider the class $Ω,$ given by \begin{equation}\label{omega} Ω=\left\{f\in\mathcal{A}:|zf'(z)-f(z)|<\dfrac{1}{2},\;z\in\mathbb{D}\right\}. \end{equation} For the above two classes, we establish inclusion relations involving some other well known subclasses of $\mathcal{S}^*$ and find radius estimates for different pairs involving these classes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源