论文标题

高阶动态模式分解以建模反应流

Higher order dynamic mode decomposition to model reacting flows

论文作者

Corrochano, Adrián, D'Alessio, Giuseppe, Parente, Alessandro, Clainche, Soledad Le

论文摘要

在这项工作中,首次提出了多维高阶动态模式分解(HODMD)的应用,以分析燃烧数据库。特别是,鉴于数据的多元性质,HODMD已与其他预处理技术(通常用于机器学习中)进行了调整并结合使用。截断步骤将主要动力学分开,使流程与较不相关的非线性动力学。该方法用于分析从计算流体动力学(CFD)获得的数据库,该数据库通过详细的动力学机制进行了轴对称,时间变化,非预流,co-Flow甲烷火焰。结果表明,HODMD可以通过减少相关模式的数量来重建主要的喷气动力学,从而能够重现系统动力学。发现这些模式是具有两个主要优点的主要流体物理学的代表性:(i)它们规定,就高维输入数据而言,可以实现强大的简化,同时(ii)观察到相对于原始数据集的小重建误差。此外,考虑使用基于主体组件分析(PCA)的特征选择和varimax旋转获得的降低矩阵,该方法也得到了验证。该验证还表明,在数据集中拥有所有变量并不重要,只有一组才能获得系统的主要动力学。这对特征选择和这些方法的成本有影响。

In this work, the application of the multi-dimensional higher order dynamic mode decomposition (HODMD) is proposed for the first time to analyse combustion databases. In particular, HODMD has been adapted and combined with other pre-processing techniques (generally used in machine learning), in light of the multivariate nature of the data. A truncation step separate the main dynamics driving the flow from less relevant non-linear dynamics. The method is applied to analyse a database obtained from a Computational Fluid Dynamics (CFD) simulation of an axisymmetric, time varying, non-premixed, co-flow methane flame carried out by means of a detailed kinetic mechanism. Results show that HODMD can reconstruct the main jet dynamics with a reduced number of relevant modes, able to reproduce the system dynamics. These modes are found to be representative for the main flow physics with two main advantages: (i) they provide for the possibility to achieve a strong simplification with respect to the high-dimensional input data, and at the same time (ii) a small reconstruction error with respect to the original dataset is observed. In addition, the method was also validated considering a reduced matrix obtained using Principal Component Analysis (PCA) based feature selection and the Varimax rotation. This validation also reveals that it is not important to have all the variables in the dataset, just a group of them is necessary to obtain the main dynamics of the system. This has an impact on feature selection and on the cost these methodologies for very massive data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源