论文标题

快速编码欧几里得对称神经网络中的可推广动力学

Rapidly Encoding Generalizable Dynamics in a Euclidean Symmetric Neural Network

论文作者

Li, Qiaofeng, Wang, Tianyi, Roychowdhury, Vwani, Jawed, M. Khalid

论文摘要

Slinky是一种螺旋弹性杆,是一种看似简单的结构,具有异常的机械行为。例如,它可以在自己的体重下走下楼梯。以Slinky为试验案例,我们提出了一种具有物理知识的深度学习方法,用于构建物理系统的减少级别模型。该方法引入了欧几里得对称神经网络(ESNN)体系结构,该体系结构在神经常规微分方程框架下进行了训练,从3D Slinky的减少顺序表示的运动轨迹中学习了2D潜在动力学。 ESNN实现了物理引导的体系结构,该体系结构同时保留了输入的欧几里得转化,包括翻译,旋转和反射。嵌入式欧几里得对称性提供物理学的解释性和概括性,同时保留神经网络的全部表达能力。我们证明,与传统的数值方法相比,ESNN方法能够通过一到两个数量级加速模拟,并实现出色的概括性能,而经典的神经网络未能学习平静的动力学,即对单个示范案例进行训练的ESNN,可以准确地预测不同Slinky Splinky配置和边界条件。对ESNN的进一步研究表明,它明确地了解了伸展和弯曲之间的非线性耦合。

Slinky, a helical elastic rod, is a seemingly simple structure with unusual mechanical behavior; for example, it can walk down a flight of stairs under its own weight. Taking Slinky as a test-case, we propose a physics-informed deep learning approach for building reduced-order models of physical systems. The approach introduces a Euclidean symmetric neural network (ESNN) architecture that is trained under the neural ordinary differential equation framework to learn the 2D latent dynamics from the motion trajectory of a reduced-order representation of the 3D Slinky. The ESNN implements a physics-guided architecture that simultaneously preserves energy invariance and force equivariance under Euclidean transformations of the input, including translation, rotation, and reflection. The embedded Euclidean symmetry provides physics-guided interpretability and generalizability, while preserving the full expressive power of the neural network. We demonstrate that the ESNN approach is able to accelerate simulation by one to two orders of magnitude compared to traditional numerical methods and achieve a superior generalization performance while classic neural networks fail to learn the Slinky dynamics, i.e., the ESNN, trained on a single demonstration case, predicts the motions accurately for unseen cases of different Slinky configurations and boundary conditions. Further investigation into the ESNN reveals that it explicitly learns the nonlinear coupling between stretching and bending of the Slinky.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源