论文标题

二元二元序列的算术互相关

Arithmetic crosscorrelation of pseudorandom binary sequences of coprime periods

论文作者

Chen, Zhixiong, Niu, Zhihua, Winterhof, Arne

论文摘要

(经典)互相关是两个二进制序列用于通信中的二进制序列的重要度量。算术互相关是戈尔斯基(Goresky)和克拉珀(Klapper)推广曼德尔鲍姆(Mandelbaum)的算术自相关引入的另一个功绩。 首先,我们观察到算术互相关对于两个二元序列的二进制序列是常数,这是对经典互相关的类似结果的补充。 然后,我们证明了两个不同时期和两个二进制$ m $序列的恒定算术互相关的上限。

The (classical) crosscorrelation is an important measure of pseudorandomness of two binary sequences for applications in communications. The arithmetic crosscorrelation is another figure of merit introduced by Goresky and Klapper generalizing Mandelbaum's arithmetic autocorrelation. First we observe that the arithmetic crosscorrelation is constant for two binary sequences of coprime periods which complements the analogous result for the classical crosscorrelation. Then we prove upper bounds for the constant arithmetic crosscorrelation of two Legendre sequences of different periods and of two binary $m$-sequences of coprime periods, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源