论文标题
没有痛苦,重大收益:通过拟合特征级时表面进行静态模型,将动态点云序列分类
No Pain, Big Gain: Classify Dynamic Point Cloud Sequences with Static Models by Fitting Feature-level Space-time Surfaces
论文作者
论文摘要
场景流是捕获3D点云的运动场的强大工具。但是,很难将基于流的模型直接应用于动态点云分类,因为非结构化点使得难以有效地有效地痕迹点对应关系变得困难甚至不可能。为了捕获没有明确跟踪对应关系的3D运动,我们通过将ST-Surfaces的运动学概念推广到特征空间来提出运动学启发的神经网络(KINET)。通过在特征空间中展开正常的st-surfaces求解器,kinet隐式编码特征级动力学,并从使用成熟的骨干进行静态点云处理中获得了优势。由于网络结构和低计算开销的小变化,共同训练和通过给定的静态模型部署我们的框架是无痛的。关于NVMENTURE,SHREC'17,MSRACTION-3D和NTU-RGBD的实验证明了其性能的功效,参数数量和计算复杂性的效率以及对各种静态骨干的多功能性。值得注意的是,Kinet仅使用320m参数和10.35g拖鞋,在MSRACTION-3D上达到93.27%的精度。
Scene flow is a powerful tool for capturing the motion field of 3D point clouds. However, it is difficult to directly apply flow-based models to dynamic point cloud classification since the unstructured points make it hard or even impossible to efficiently and effectively trace point-wise correspondences. To capture 3D motions without explicitly tracking correspondences, we propose a kinematics-inspired neural network (Kinet) by generalizing the kinematic concept of ST-surfaces to the feature space. By unrolling the normal solver of ST-surfaces in the feature space, Kinet implicitly encodes feature-level dynamics and gains advantages from the use of mature backbones for static point cloud processing. With only minor changes in network structures and low computing overhead, it is painless to jointly train and deploy our framework with a given static model. Experiments on NvGesture, SHREC'17, MSRAction-3D, and NTU-RGBD demonstrate its efficacy in performance, efficiency in both the number of parameters and computational complexity, as well as its versatility to various static backbones. Noticeably, Kinet achieves the accuracy of 93.27% on MSRAction-3D with only 3.20M parameters and 10.35G FLOPS.