论文标题
带填充空间的高保真gan反转
High-fidelity GAN Inversion with Padding Space
论文作者
论文摘要
反转生成对抗网络(GAN)可以使用预训练的发电机来促进广泛的图像编辑任务。现有方法通常采用gan的潜在空间作为倒置空间,但观察到空间细节的恢复不足。在这项工作中,我们建议涉及发电机的填充空间,以通过空间信息补充潜在空间。具体而言,我们替换具有某种实例感知系数的卷积层中使用的恒定填充(例如,通常为零)。通过这种方式,可以适当地适应预训练模型中假定的归纳偏差以适合每个单独的图像。通过学习精心设计的编码器,我们设法在定性和定量上提高了反演质量,超过了现有的替代方案。然后,我们证明了这样的空间扩展几乎不会影响天然的gan歧管,因此我们仍然可以重复使用甘斯(Gans)对各种下游应用学到的先验知识。除了在先前的艺术中探讨的编辑任务外,我们的方法还允许更灵活的图像操纵,例如对面轮廓和面部细节的单独控制,并启用一种新颖的编辑方式,用户可以高效地自定义自己的操作。
Inverting a Generative Adversarial Network (GAN) facilitates a wide range of image editing tasks using pre-trained generators. Existing methods typically employ the latent space of GANs as the inversion space yet observe the insufficient recovery of spatial details. In this work, we propose to involve the padding space of the generator to complement the latent space with spatial information. Concretely, we replace the constant padding (e.g., usually zeros) used in convolution layers with some instance-aware coefficients. In this way, the inductive bias assumed in the pre-trained model can be appropriately adapted to fit each individual image. Through learning a carefully designed encoder, we manage to improve the inversion quality both qualitatively and quantitatively, outperforming existing alternatives. We then demonstrate that such a space extension barely affects the native GAN manifold, hence we can still reuse the prior knowledge learned by GANs for various downstream applications. Beyond the editing tasks explored in prior arts, our approach allows a more flexible image manipulation, such as the separate control of face contour and facial details, and enables a novel editing manner where users can customize their own manipulations highly efficiently.