论文标题
四维弦校正黑洞的理论和现象学
Theory and phenomenology of a four dimensional string-corrected black hole
论文作者
论文摘要
我们通过在$ d $二维的callan-myers-perry黑洞中重新缩放弦耦合参数来构建有效的四维弦乐校正黑洞(4D SCBH)。从理论的角度来看,最有趣的发现是,弦校正与所谓的广义不确定性原理(GUP)对黑洞解决方案进行了校正,Bekenstein-Hawking熵获得了对数校正,并且存在对黑洞温度温度的关键价值的关键价值。我们还发现,由于字符串校正,中央奇异性的性质可能会从间距般的奇异性改变。此外,我们研究了通过天体物理观测测试这样的黑洞的可能性。由于DILATON场并未与度量标准脱离,因此尚不清楚所产生的4D SCBH仅对Schwarzschild Black Hole提供了少量校正。我们使用了银河系中心的黑洞的S2星的运动来约束4D SCBH的参数(弦耦合参数和ADM质量)。为了测试弱重力状态,我们计算此几何形状中的挠度角,并将其应用于重力镜头。为了测试强场状态,我们计算了黑洞阴影半径。虽然我们发现观察值随着字符串耦合参数的变化而发生变化,但变化的幅度太小,无法将其与Schwarzschild黑洞区分开。对于当前的精度,到领先的顺序项,无法将4D SCBH与Schwarzschild黑洞区分开。
We construct an effective four dimensional string-corrected black hole (4D SCBH) by rescaling the string coupling parameter in a $D$-dimensional Callan-Myers-Perry black hole. From the theoretical point of view, the most interesting findings are that the string corrections coincide with the so-called generalized uncertainty principle (GUP) corrections to black hole solutions, Bekenstein-Hawking entropy acquires logarithmic corrections, and that there exists a critical value of the coupling parameter for which the black hole temperature vanishes. We also find that, due to the string corrections the nature of the central singularity may be altered from spacelike to timelike singularity. In addition, we study the possibility of testing such a black hole with astrophysical observations. Since the dilaton field does not decouple from the metric it is not a priori clear that the resulting 4D SCBH offers only small corrections to the Schwarzschild black hole. We used motion of the S2 star around the black hole at the center of our galaxy to constrain the parameters (the string coupling parameter and ADM mass) of the 4D SCBH. To test the weak gravity regime we calculate the deflection angle in this geometry and apply it to gravitational lensing. To test the strong field regime, we calculate the black hole shadow radius. While we find that the observables change as we change the string coupling parameter, the magnitude of the change is too small to distinguish it from the Schwarzschild black hole. With the current precision, to the leading order terms, the 4D SCBH cannot be distinguished from the Schwarzschild black hole.