论文标题
使用强力透镜的当前和将来观察到的宇宙学参数估计
Cosmological Parameter Estimation Using Current and Future Observations of Strong Gravitational Lensing
论文作者
论文摘要
宇宙学的显着发展受益于越来越改进的宇宙距离测量值,包括绝对距离和相对距离。然而,近年来,出现的宇宙学紧张局势激发了我们探索独立和精确的后期探针。强力引力透镜(SGL),晶状体星系的速度分散以及多个图像之间的时间延迟的两个观察性效应,可以分别提供相对距离和绝对距离的测量,并且可以分别分配其组合,以打破宇宙学参数之间的脱色发性,并在宇宙学参数之间进行严格的约束,对宇宙学参数产生紧密的约束。在本文中,我们将观察到的130个SGL系统与速度分散测量和7个SGL系统与时间延迟测量相结合,以限制黑暗能源宇宙学模型。发现这两种效应的组合并未如预期的那样显着打破宇宙学参数之间的脱落性。但是,通过模拟了具有良好速度分散速度的8000个SGL系统和基于即将进行的LSST调查的55个具有良好时间延迟的SGL系统,我们发现两种效果的组合可以显着打破参数退化性的,并使符合精确的精确性介绍精确的精确性的精确参数的约束精度。我们得出的结论是,SGL的观察结果将成为精确测量宇宙学参数的有用后期探针。
Remarkable development of cosmology is benefited from the increasingly improved measurements of cosmic distances including absolute distances and relative distances. In recent years, however, the emerged cosmological tensions motivate us to explore the independent and precise late-universe probes. The two observational effects of strong gravitational lensing (SGL), the velocity dispersions of lens galaxies and the time delays between multiple images, can provide measurements of relative and absolute distances respectively, and their combination is possible to break the degeneracies between cosmological parameters and enable tight constraints on cosmological parameters. In this paper, we combine the observed 130 SGL systems with velocity-dispersion measurements and 7 SGL systems with time-delay measurements to constrain dark-energy cosmological models. It is found that the combination of the two effects does not significantly break the degeneracies between cosmological parameters as expected. However, with the simulations of 8000 SGL systems with well-measured velocity dispersions and 55 SGL systems with well-measured time delays based on the forthcoming LSST survey, we find that the combination of two effects can significantly break the parameter degeneracies, and make the constraint precision of cosmological parameters meet the standard of precision cosmology. We conclude that the observations of SGL will become a useful late-universe probe for precisely measuring cosmological parameters.