论文标题

STCGAT:智能运输系统中交通流量预测的时空因果图图网络

STCGAT: A Spatio-temporal Causal Graph Attention Network for traffic flow prediction in Intelligent Transportation Systems

论文作者

Zhao, Wei, Zhang, Shiqi, Zhou, Bing, Wang, Bei

论文摘要

由现代运输引起的空气污染和碳排放与全球气候变化密切相关。借助下一代信息技术,例如物联网(IoT)和人工智能(AI),准确的交通流量预测可以有效地解决交通拥堵和减轻环境污染和气候变化等问题。它进一步促进了智能运输系统(ITS)和智能城市的发展。但是,交通数据的强烈空间和时间相关性使准确的流量的任务预测了一个重大挑战。现有方法通常是基于图形神经网络,使用交通网络的预定空间邻接图来建模空间依赖性,而忽略了道路节点之间关系的动态相关性。此外,他们通常使用独立的时空组件来捕获时空依赖性,并且不会有效地对全局时空依赖性进行建模。本文提出了一个新的时空因果图表注意网络(STCGAT),以解决上述挑战。在STCGAT中,我们使用一种节点嵌入方法,可以在每个时间步骤中自适应生成空间邻接子图,而无需先验地理知识和对不同时间步骤动态生成图的拓扑的细化建模。同时,我们提出了一个有效的因果时间相关成分,其中包含节点自适应学习,图形卷积以及局部和全局因果关系卷积模块,以共同学习局部和全局时空依赖性。在四个真正的大型流量数据集上进行的广泛实验表明,我们的模型始终优于所有基线模型。

Air pollution and carbon emissions caused by modern transportation are closely related to global climate change. With the help of next-generation information technology such as Internet of Things (IoT) and Artificial Intelligence (AI), accurate traffic flow prediction can effectively solve problems such as traffic congestion and mitigate environmental pollution and climate change. It further promotes the development of Intelligent Transportation Systems (ITS) and smart cities. However, the strong spatial and temporal correlation of traffic data makes the task of accurate traffic forecasting a significant challenge. Existing methods are usually based on graph neural networks using predefined spatial adjacency graphs of traffic networks to model spatial dependencies, ignoring the dynamic correlation of relationships between road nodes. In addition, they usually use independent Spatio-temporal components to capture Spatio-temporal dependencies and do not effectively model global Spatio-temporal dependencies. This paper proposes a new Spatio-temporal Causal Graph Attention Network (STCGAT) for traffic prediction to address the above challenges. In STCGAT, we use a node embedding approach that can adaptively generate spatial adjacency subgraphs at each time step without a priori geographic knowledge and fine-grained modeling of the topology of dynamically generated graphs for different time steps. Meanwhile, we propose an efficient causal temporal correlation component that contains node adaptive learning, graph convolution, and local and global causal temporal convolution modules to learn local and global Spatio-temporal dependencies jointly. Extensive experiments on four real, large traffic datasets show that our model consistently outperforms all baseline models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源