论文标题

成对马尔可夫模型的混合分类器

Hybrid classifiers of pairwise Markov models

论文作者

Kuljus, Kristi, Lember, Jüri

论文摘要

文章研究分割问题(​​也称为分类问题)与成对马尔可夫模型(PMMS)。 PMM是一个过程,观察过程和基础状态序列形成二维马尔可夫链,它是隐藏的马尔可夫模型的自然概括。为了证明PMMS类的丰富性,我们仔细研究了一些相当不同的PMMS的例子:两个相关的马尔可夫链的模型,该模型允许建模不均匀的Markov链作为同质的模型和一个半马尔可夫模型。分割问题假设观察到一个边缘过程之一,而另一个则不是一个边缘过程,问题是要估计观察结果的未观察到的状态路径。经常使用的标准状态路径估计器是所谓的Viterbi路径(给定观测值的最大状态路径概率的序列)或尖端的最大A后验(PMAP)路径(一种最大化给定观察值的条件状态概率的序列)。这两个估计器都有其局限性,因此我们得出用于计算所谓的混合路径估计器的公式,该估计量在PMAP和VITERBI路径之间插值。我们将引入的算法应用于研究的模型,以证明不同分割方法的属性,并说明不同PMMS中不同分割方法行为的较大变化。研究的示例表明,应考虑特定感兴趣的模型,始终谨慎选择分割方法。

The article studies segmentation problem (also known as classification problem) with pairwise Markov models (PMMs). A PMM is a process where the observation process and underlying state sequence form a two-dimensional Markov chain, it is a natural generalization of a hidden Markov model. To demonstrate the richness of the class of PMMs, we examine closer a few examples of rather different types of PMMs: a model for two related Markov chains, a model that allows to model an inhomogeneous Markov chain as a homogeneous one and a semi-Markov model. The segmentation problem assumes that one of the marginal processes is observed and the other one is not, the problem is to estimate the unobserved state path given the observations. The standard state path estimators often used are the so-called Viterbi path (a sequence with maximum state path probability given the observations) or the pointwise maximum a posteriori (PMAP) path (a sequence that maximizes the conditional state probability for given observations pointwise). Both these estimators have their limitations, therefore we derive formulas for calculating the so-called hybrid path estimators which interpolate between the PMAP and Viterbi path. We apply the introduced algorithms to the studied models in order to demonstrate the properties of different segmentation methods, and to illustrate large variation in behaviour of different segmentation methods in different PMMs. The studied examples show that a segmentation method should always be chosen with care by taking into account the particular model of interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源