论文标题
没有变化的增强(NSA):适合自我监督异常检测的紧凑分布
No Shifted Augmentations (NSA): compact distributions for robust self-supervised Anomaly Detection
论文作者
论文摘要
无监督的异常检测(AD)需要建立正常概念,区分分布(ID)和分布式(OOD)数据,仅使用可用的ID示例。最近,使用自我监督的对比功能学习作为第一步,在此任务上为自然图像的领域取得了巨大收益,其次是KNN或传统的一级分类器进行特征评分。已证明在单位超球上分布在单位中,学到的表示对这项任务是有益的。我们走进一步,研究ID特征分布的\ emph {几何紧凑型}如何使隔离和检测异常值更加容易,尤其是在对ID训练数据受到污染的现实情况下(即,ID数据包含一些用于学习特征提取器参数的OOD数据)。我们将新颖的体系结构修改提出了自我监督的特征学习步骤,从而使这种紧凑的分布能够学习ID数据。我们表明,所提出的修改可以有效地应用于大多数现有的自我监管的目标,并具有巨大的性能。此外,可以获得这种改进的OOD性能,而无需诉诸诸如使用强烈增强的ID图像(例如,旋转90度)作为看不见的OOD数据的代理,因为这些对ID数据及其侵袭性施加了过于规定的假设。我们对基准数据集进行了广泛的研究,以进行一级OOD检测,并在ID数据中存在污染的情况下显示出最先进的性能,否则可比较性能。我们还提出并广泛评估基于角度马哈拉氏症距离的新型功能评分技术,并提出了一种简单而新颖的技术,用于评估期间的功能结合功能,从而使性能以几乎零运行时的成本大大提高。
Unsupervised Anomaly detection (AD) requires building a notion of normalcy, distinguishing in-distribution (ID) and out-of-distribution (OOD) data, using only available ID samples. Recently, large gains were made on this task for the domain of natural images using self-supervised contrastive feature learning as a first step followed by kNN or traditional one-class classifiers for feature scoring. Learned representations that are non-uniformly distributed on the unit hypersphere have been shown to be beneficial for this task. We go a step further and investigate how the \emph {geometrical compactness} of the ID feature distribution makes isolating and detecting outliers easier, especially in the realistic situation when ID training data is polluted (i.e. ID data contains some OOD data that is used for learning the feature extractor parameters). We propose novel architectural modifications to the self-supervised feature learning step, that enable such compact distributions for ID data to be learned. We show that the proposed modifications can be effectively applied to most existing self-supervised objectives, with large gains in performance. Furthermore, this improved OOD performance is obtained without resorting to tricks such as using strongly augmented ID images (e.g. by 90 degree rotations) as proxies for the unseen OOD data, as these impose overly prescriptive assumptions about ID data and its invariances. We perform extensive studies on benchmark datasets for one-class OOD detection and show state-of-the-art performance in the presence of pollution in the ID data, and comparable performance otherwise. We also propose and extensively evaluate a novel feature scoring technique based on the angular Mahalanobis distance, and propose a simple and novel technique for feature ensembling during evaluation that enables a big boost in performance at nearly zero run-time cost.