论文标题

HIPA:单图超级分辨率的分层贴片变压器

HIPA: Hierarchical Patch Transformer for Single Image Super Resolution

论文作者

Cai, Qing, Qian, Yiming, Li, Jinxing, Lv, Jun, Yang, Yee-Hong, Wu, Feng, Zhang, David

论文摘要

基于变压器的体系结构开始在单图超级分辨率(SISR)中出现,并实现了有希望的性能。大多数现有的视觉变压器将图像分为具有固定尺寸的相同数量的贴片,这对于恢复具有不同质地丰富度级别的补丁可能不是最佳的。本文介绍了HIPA,这是一种新型的变压器体系结构,使用分层贴片分区逐渐恢复了高分辨率图像。具体来说,我们构建了一个级联模型,该模型在多个阶段处理输入图像,在该阶段,我们从具有小斑块大小的令牌开始,并逐渐合并到完整的分辨率。这样的分层补丁机制不仅可以在多个分辨率下明确启用特征聚合,而且还可以自适应地学习不同图像区域的补丁吸引功能,例如,使用较小的贴片来为具有良好细节的区域和较大的无纹理区域的补丁。同时,提出了一种针对变压器的新的基于注意力的位置编码方案,以使网络重点在于,应通过将不同的权重分配给不同的令牌,这是我们最佳知识的第一次,这是第一次。此外,我们还提出了一个新的多受感染场注意模块,以扩大不同分支的卷积接收场。几个公共数据集的实验结果表明,拟议的HIPA在定量和定性上比以前的方法具有出色的性能。

Transformer-based architectures start to emerge in single image super resolution (SISR) and have achieved promising performance. Most existing Vision Transformers divide images into the same number of patches with a fixed size, which may not be optimal for restoring patches with different levels of texture richness. This paper presents HIPA, a novel Transformer architecture that progressively recovers the high resolution image using a hierarchical patch partition. Specifically, we build a cascaded model that processes an input image in multiple stages, where we start with tokens with small patch sizes and gradually merge to the full resolution. Such a hierarchical patch mechanism not only explicitly enables feature aggregation at multiple resolutions but also adaptively learns patch-aware features for different image regions, e.g., using a smaller patch for areas with fine details and a larger patch for textureless regions. Meanwhile, a new attention-based position encoding scheme for Transformer is proposed to let the network focus on which tokens should be paid more attention by assigning different weights to different tokens, which is the first time to our best knowledge. Furthermore, we also propose a new multi-reception field attention module to enlarge the convolution reception field from different branches. The experimental results on several public datasets demonstrate the superior performance of the proposed HIPA over previous methods quantitatively and qualitatively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源