论文标题

爱因斯坦田间方程,递归运算符,noether和smaster对称性托有泊松歧管中的对称性

Einstein field equation, recursion operators, Noether and master symmetries in conformable Poisson manifolds

论文作者

Hounkonnou, Mahouton Norbert, Landalidji, Mahougnon Justin, Mitrovic, Melanija

论文摘要

我们表明,一个相对具有符合差异的括号的Minkowski相空间实现了一个泊松代数,并授予了Bi-Hamiltonian结构为由此产生的歧管。我们推断相关的哈密顿载体场是无限的noether对称性,并计算相应的变形递归操作员。 Besides, using the Hamiltonian-Jacobi separability, we construct recursion operators for Hamiltonian vector fields in conformable Poisson-Schwarzschild and Friedmann-Lemaître-Robertson-Walker (FLRW) manifolds, and derive related constants of motion, Christoffel symbols, components of Riemann and Ricci tensors, Ricci constant and components of爱因斯坦张量。我们强调了两种歧管中双 - 哈米尔顿结构的层次结构的存在,并计算一个递归操作员和主体产生运动常数的家族。

We show that a Minkowski phase space endowed with a bracket relatively to a conformable differential realizes a Poisson algebra, confering a bi-Hamiltonian structure to the resulting manifold. We infer that the related Hamiltonian vector field is an infinitesimal Noether symmetry, and compute the corresponding deformed recursion operator. Besides, using the Hamiltonian-Jacobi separability, we construct recursion operators for Hamiltonian vector fields in conformable Poisson-Schwarzschild and Friedmann-Lemaître-Robertson-Walker (FLRW) manifolds, and derive related constants of motion, Christoffel symbols, components of Riemann and Ricci tensors, Ricci constant and components of Einstein tensor. We highlight the existence of a hierarchy of bi-Hamiltonian structures in both the manifolds, and compute a family of recursion operators and master symmetries generating the constants of motion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源