论文标题
非线性流变学的kramers-kronig关系:2。中等振幅振荡剪切(MAOS)测量的验证
Kramers-Kronig Relations for Nonlinear Rheology: 2. Validation of Medium Amplitude Oscillatory Shear (MAOS) Measurements
论文作者
论文摘要
第三谐波振幅振动剪切(MAOS)模量$ g_ {33}^{*}(ω)$的频率依赖性提供了对渐近非线性方案中材料行为和微观结构的见解。由于测量MAOS MODULI的难度,我们提出了基于非线性Kramers-Kronig关系的数据验证的测试。我们通过表达$ g_ {33}^{*}(ω)$作为麦克斯韦元素的线性组合的$ g_ {33}^{*}(ω)$的真实和虚构部分来评估线性粘弹性数据一致性的方法:MAOS内核的功能形式受时间 - 核分离性(TSS)的启发。我们提出了一种称为冶金测试的统计拟合技术,该技术在广泛的材料和模型中效果很好,包括那些不服从TSS的材料和模型。它成功地应对嘈杂的实验数据,或仅限于有限的频率范围。当使用冶金测试获得的麦克斯韦模式预测第一谐波MAOS模量$ g_ {31}^{*} $时,可以识别材料显示TSS的时间表的范围。
The frequency dependence of third-harmonic medium amplitude oscillatory shear (MAOS) modulus $G_{33}^{*}(ω)$ provides insight into material behavior and microstructure in the asymptotically nonlinear regime. Motivated by the difficulty in the measurement of MAOS moduli, we propose a test for data validation based on nonlinear Kramers-Kronig relations. We extend the approach used to assess the consistency of linear viscoelastic data by expressing the real and imaginary parts of $G_{33}^{*}(ω)$ as a linear combination of Maxwell elements: the functional form for the MAOS kernels is inspired by time-strain separability (TSS). We propose a statistical fitting technique called the SMEL test, which works well on a broad range of materials and models including those that do not obey TSS. It successfully copes with experimental data that are noisy, or confined to a limited frequency range. When Maxwell modes obtained from the SMEL test are used to predict the first-harmonic MAOS modulus $G_{31}^{*}$, it is possible to identify the range of timescales over which a material exhibits TSS.