论文标题

BCEA:用于成本效益分析的R包装

BCEA: An R Package for Cost-Effectiveness Analysis

论文作者

Green, Nathan, Heath, Anna, Baio, Gianluca

论文摘要

我们详细描述了如何使用R软件包$ \ textbf {bcea} $(贝叶斯成本效益分析)进行健康经济成本效益分析(CEA)。 CEA包括结合干预成本和健康后果的分析方法。这些有助于了解与替代干预措施(例如对照或现状)相比,干预措施可能成本(每单位健康)的费用(每单位健康)。对于资源分配,决策者可能希望知道干预措施是否是节省成本,如果不是这样,那么实施该干预措施与效率较低的干预措施相比要花费多少。 当前的成本效益分析指南提倡对不确定性的量化,这些不确定性可以由从概率敏感性分析或更有效的贝叶斯模型中获得的随机样本表示。 $ \ textbf {bcea} $可用于后处理采样成本和健康影响,以执行产生标准化且高度可定制的输出的高级分析。我们介绍包装的功能,包括其许多功能及其实际应用。 $ \ textbf {bcea} $对于想要简化和标准化其工作流程的健康经济建模领域的统计学家和从业人员来说是有价值的,例如,为支持营销授权或学术和科学出版物的档案准备工作。

We describe in detail how to perform health economic cost-effectiveness analyses (CEA) using the R package $\textbf{BCEA}$ (Bayesian Cost-Effectiveness Analysis). CEA consist of analytic approaches for combining costs and health consequences of intervention(s). These help to understand how much an intervention may cost (per unit of health gained) compared to an alternative intervention, such as a control or status quo. For resource allocation, a decision maker may wish to know if an intervention is cost saving, and if not then how much more would it cost to implement it compared to a less effective intervention. Current guidance for cost-effectiveness analyses advocates the quantification of uncertainties which can be represented by random samples obtained from a probability sensitivity analysis or, more efficiently, a Bayesian model. $\textbf{BCEA}$ can be used to post-process the sampled costs and health impacts to perform advanced analyses producing standardised and highly customisable outputs. We present the features of the package, including its many functions and their practical application. $\textbf{BCEA}$ is valuable for statisticians and practitioners working in the field of health economic modelling wanting to simplify and standardise their workflow, for example in the preparation of dossiers in support of marketing authorisation, or academic and scientific publications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源