论文标题

面部几何细节通过隐式表示

Facial Geometric Detail Recovery via Implicit Representation

论文作者

Ren, Xingyu, Lattas, Alexandros, Gecer, Baris, Deng, Jiankang, Ma, Chao, Yang, Xiaokang, Zafeiriou, Stefanos

论文摘要

从单个面部图像中学习具有细节细节的密集3D模型是高度挑战性和不适的。为了解决这个问题,许多方法通过面部先验符合平稳的几何形状,同时学习细节作为其他位移图或个性化基础。但是,这些技术通常需要大量的配对多视图数据或3D扫描的数据集,而这些数据集则稀缺且昂贵。为了减轻大量数据依赖性,我们仅使用单个野外面部图像提出了强大的纹理引导的几何细节恢复方法。更具体地说,我们的方法将高质量的纹理完成与隐式表面的强大表现力相结合。最初,我们对面部零件进行了遮挡,生成完整的纹理,并构建同一主题的准确的多视图数据集。为了估算详细的几何形状,我们定义了一个隐式签名的距离函数,并采用基于物理的隐式渲染器来从生成的多视图图像中重建细微的几何细节。我们的方法不仅恢复了准确的面部细节,而且还以一种自我监督的方式分解了正态,反照率和阴影部分。最后,我们将隐式形状细节注册到3D形态模型模板中,该模型可用于传统的建模和渲染管道。广泛的实验表明,所提出的方法可以从单个图像中重建令人印象深刻的面部细节,尤其是与在大型数据集中训练的最新方法相比。

Learning a dense 3D model with fine-scale details from a single facial image is highly challenging and ill-posed. To address this problem, many approaches fit smooth geometries through facial prior while learning details as additional displacement maps or personalized basis. However, these techniques typically require vast datasets of paired multi-view data or 3D scans, whereas such datasets are scarce and expensive. To alleviate heavy data dependency, we present a robust texture-guided geometric detail recovery approach using only a single in-the-wild facial image. More specifically, our method combines high-quality texture completion with the powerful expressiveness of implicit surfaces. Initially, we inpaint occluded facial parts, generate complete textures, and build an accurate multi-view dataset of the same subject. In order to estimate the detailed geometry, we define an implicit signed distance function and employ a physically-based implicit renderer to reconstruct fine geometric details from the generated multi-view images. Our method not only recovers accurate facial details but also decomposes normals, albedos, and shading parts in a self-supervised way. Finally, we register the implicit shape details to a 3D Morphable Model template, which can be used in traditional modeling and rendering pipelines. Extensive experiments demonstrate that the proposed approach can reconstruct impressive facial details from a single image, especially when compared with state-of-the-art methods trained on large datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源