论文标题

DEEPLSS:通过对组合探针进行深度学习分析的大规模结构中的分解参数归化性

DeepLSS: breaking parameter degeneracies in large scale structure with deep learning analysis of combined probes

论文作者

Kacprzak, Tomasz, Fluri, Janis

论文摘要

在具有2-PT功能的大规模结构调查的经典宇宙学分析中,参数测量精度受到宇宙学和天体物理学领域中的几个关键退化的限制。对于宇宙剪切,聚类幅度$σ_8$和物质密度$ω_m$ $ $ lock遵循$ s_8 =σ_8(ω_m/0.3)^{0.5} $关系。反过来,$ s_8 $与内在的星系对齐振幅$ a _ {\ rm {ia}} $高度相关。对于星系聚类,偏见$ b_g $,$σ_8$和$ω_m$以及随机性$ r_g $均已退化。此外,IA和偏差的红移演变会引起进一步的参数混乱。断层扫描2-PT探针组合可以部分提高这些脱生。在这项工作中,我们证明了对弱引力透镜和星系聚类的综合探针的深度学习分析,我们称为Deeplss,可以有效地打破这些脱位,并在$σ_8$,$ω_m$,$ a_ a_ {ia ia} $,$ b_g,$ b_g,$ b_g,$ b_g,$ b_g,$ b_g,$ b_g,$ b_g,$ b_g,$ b_g,$ b_g,$ b_g,$ b_g,$ b_g,$ b_g,$ b_g,$ b_g,$ b_g,$ b_g,$ b_g,$ b_g, $η_{\ rm {ia}} $。最重要的收益是在IA部门中:$ a _ {\ rm {ia}} $的精度增加了约8倍,几乎完全与$ s_8 $相关。 Galaxy Bias $ B_G $提高了1.5倍,随机性$ R_G $ 3倍,RedShift Evolution $η_{\ rm {ia}} $和$η_b$ by 1.6倍。破坏这些脱色器会导致$σ_8$和$ω_m$的约束功率的显着增益,功绩的数字提高了15倍。我们使用灵敏度图为此信息增益的起源提供了直观的解释。这些结果表明,使用机器学习的宇宙学推断的完全数值的,基于地图的前向建模方法可能在即将进行的LSS调查中起重要作用。我们讨论了其实际部署的观点和挑战,以进行完整的调查分析。

In classical cosmological analysis of large scale structure surveys with 2-pt functions, the parameter measurement precision is limited by several key degeneracies within the cosmology and astrophysics sectors. For cosmic shear, clustering amplitude $σ_8$ and matter density $Ω_m$ roughly follow the $S_8=σ_8(Ω_m/0.3)^{0.5}$ relation. In turn, $S_8$ is highly correlated with the intrinsic galaxy alignment amplitude $A_{\rm{IA}}$. For galaxy clustering, the bias $b_g$ is degenerate with both $σ_8$ and $Ω_m$, as well as the stochasticity $r_g$. Moreover, the redshift evolution of IA and bias can cause further parameter confusion. A tomographic 2-pt probe combination can partially lift these degeneracies. In this work we demonstrate that a deep learning analysis of combined probes of weak gravitational lensing and galaxy clustering, which we call DeepLSS, can effectively break these degeneracies and yield significantly more precise constraints on $σ_8$, $Ω_m$, $A_{\rm{IA}}$, $b_g$, $r_g$, and IA redshift evolution parameter $η_{\rm{IA}}$. The most significant gains are in the IA sector: the precision of $A_{\rm{IA}}$ is increased by approximately 8x and is almost perfectly decorrelated from $S_8$. Galaxy bias $b_g$ is improved by 1.5x, stochasticity $r_g$ by 3x, and the redshift evolution $η_{\rm{IA}}$ and $η_b$ by 1.6x. Breaking these degeneracies leads to a significant gain in constraining power for $σ_8$ and $Ω_m$, with the figure of merit improved by 15x. We give an intuitive explanation for the origin of this information gain using sensitivity maps. These results indicate that the fully numerical, map-based forward modeling approach to cosmological inference with machine learning may play an important role in upcoming LSS surveys. We discuss perspectives and challenges in its practical deployment for a full survey analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源