论文标题

基于密度尺度特征融合和像素级失衡学习的一阶段深边缘检测

One-Stage Deep Edge Detection Based on Dense-Scale Feature Fusion and Pixel-Level Imbalance Learning

论文作者

Dai, Dawei, Wang, Chunjie, Xia, Shuyin, Liu, Yingge, Wang, Guoyin

论文摘要

边缘检测是计算机视觉领域的基本任务,是识别和理解视觉场景的重要预处理操作。在常规模型中,生成的边缘图像模棱两可,边缘线也非常厚,这通常需要使用非最大最大抑制(NMS)和形态稀疏操作来生成清晰而薄的边缘图像。在本文中,我们旨在提出一个单阶段的神经网络模型,该模型可以生成高质量的边缘图像而无需后处理。所提出的模型采用了经典的编码器框架,其中将预训练的神经模型用作编码器和一种多功能融合机制,该机制将每个级别的特征与彼此的功能合并为可学习的解码器。此外,我们提出了一个新的损耗函数,该函数通过抑制真实正(TP)边缘附近的误光(FP)边缘信息和误压(FN)非边缘来解决边缘图像中像素级的不平衡。在几个基准数据集上进行的实验结果表明,所提出的方法在不使用NMS和形态学稀疏操作的情况下实现了最先进的结果。

Edge detection, a basic task in the field of computer vision, is an important preprocessing operation for the recognition and understanding of a visual scene. In conventional models, the edge image generated is ambiguous, and the edge lines are also very thick, which typically necessitates the use of non-maximum suppression (NMS) and morphological thinning operations to generate clear and thin edge images. In this paper, we aim to propose a one-stage neural network model that can generate high-quality edge images without postprocessing. The proposed model adopts a classic encoder-decoder framework in which a pre-trained neural model is used as the encoder and a multi-feature-fusion mechanism that merges the features of each level with each other functions as a learnable decoder. Further, we propose a new loss function that addresses the pixel-level imbalance in the edge image by suppressing the false positive (FP) edge information near the true positive (TP) edge and the false negative (FN) non-edge. The results of experiments conducted on several benchmark datasets indicate that the proposed method achieves state-of-the-art results without using NMS and morphological thinning operations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源