论文标题

基于Hoeffding不平等和相对评估的深度学习的置信度

Confidence Dimension for Deep Learning based on Hoeffding Inequality and Relative Evaluation

论文作者

Wang, Runqi, Yang, Linlin, Zhang, Baochang, Zhu, Wentao, Doermann, David, Guo, Guodong

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Research on the generalization ability of deep neural networks (DNNs) has recently attracted a great deal of attention. However, due to their complex architectures and large numbers of parameters, measuring the generalization ability of specific DNN models remains an open challenge. In this paper, we propose to use multiple factors to measure and rank the relative generalization of DNNs based on a new concept of confidence dimension (CD). Furthermore, we provide a feasible framework in our CD to theoretically calculate the upper bound of generalization based on the conventional Vapnik-Chervonenk dimension (VC-dimension) and Hoeffding's inequality. Experimental results on image classification and object detection demonstrate that our CD can reflect the relative generalization ability for different DNNs. In addition to full-precision DNNs, we also analyze the generalization ability of binary neural networks (BNNs), whose generalization ability remains an unsolved problem. Our CD yields a consistent and reliable measure and ranking for both full-precision DNNs and BNNs on all the tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源