论文标题

SAT-NERF:使用RPC摄像机学习多视图卫星摄影测量法和阴影建模

Sat-NeRF: Learning Multi-View Satellite Photogrammetry With Transient Objects and Shadow Modeling Using RPC Cameras

论文作者

Marí, Roger, Facciolo, Gabriele, Ehret, Thibaud

论文摘要

我们介绍了卫星神经辐射场(SAT-NERF),这是一种新的端到端模型,用于学习野外的多视图卫星摄影测量。 SAT-NERF通过理性多项式系数(RPC)函数代表的本机卫星相机模型结合了神经渲染的一些最新趋势。所提出的方法使新的视图和注入与传统最新立体声管道获得的表面模型相似的表面模型。多日期图像在外观上显示出显着变化,这主要是由于阴影和瞬态物体(汽车,植被)。对这些挑战的鲁棒性是通过阴影感知的辐照模型和不确定性加权来处理瞬态现象,而太阳的位置无法解释的。我们使用来自不同位置的WorldView-3图像评估SAT-NERF,并在训练之前对卫星相机型号进行捆绑套件调整的优势。这可以提高网络性能,并可以选择用于提取其他提示以进行深度监督。

We introduce the Satellite Neural Radiance Field (Sat-NeRF), a new end-to-end model for learning multi-view satellite photogrammetry in the wild. Sat-NeRF combines some of the latest trends in neural rendering with native satellite camera models, represented by rational polynomial coefficient (RPC) functions. The proposed method renders new views and infers surface models of similar quality to those obtained with traditional state-of-the-art stereo pipelines. Multi-date images exhibit significant changes in appearance, mainly due to varying shadows and transient objects (cars, vegetation). Robustness to these challenges is achieved by a shadow-aware irradiance model and uncertainty weighting to deal with transient phenomena that cannot be explained by the position of the sun. We evaluate Sat-NeRF using WorldView-3 images from different locations and stress the advantages of applying a bundle adjustment to the satellite camera models prior to training. This boosts the network performance and can optionally be used to extract additional cues for depth supervision.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源