论文标题

自我监督的深度学习以增强乳房X线摄影的乳腺癌检测

Self-Supervised Deep Learning to Enhance Breast Cancer Detection on Screening Mammography

论文作者

Miller, John D., Arasu, Vignesh A., Pu, Albert X., Margolies, Laurie R., Sieh, Weiva, Shen, Li

论文摘要

将深度学习应用于人工智能(AI)系统的主要局限性是缺乏高质量的策划数据集。我们研究了强大的基于增强的自我监督学习(SSL)技术来解决此问题。以乳腺癌的检测为例,我们首先确定乳房X线图特异性转化范式,然后系统地比较四种代表多种方法的SSL方法。我们开发了一种方法,可以将验证的模型从对均匀瓷砖斑块进行预测到整个图像的预测,以及一种基于注意力的合并方法,以改善分类性能。我们发现,最佳SSL模型基本上优于基线监督模型。最佳的SSL模型还将样本标记的数据效率提高了近4倍,并且可以从一个数据集转移到另一个数据集。 SSL代表了计算机视觉的重大突破,可能有助于AI用于医学成像领域,从而摆脱了监督的学习和对稀缺标签的依赖。

A major limitation in applying deep learning to artificial intelligence (AI) systems is the scarcity of high-quality curated datasets. We investigate strong augmentation based self-supervised learning (SSL) techniques to address this problem. Using breast cancer detection as an example, we first identify a mammogram-specific transformation paradigm and then systematically compare four recent SSL methods representing a diversity of approaches. We develop a method to convert a pretrained model from making predictions on uniformly tiled patches to whole images, and an attention-based pooling method that improves the classification performance. We found that the best SSL model substantially outperformed the baseline supervised model. The best SSL model also improved the data efficiency of sample labeling by nearly 4-fold and was highly transferrable from one dataset to another. SSL represents a major breakthrough in computer vision and may help the AI for medical imaging field to shift away from supervised learning and dependency on scarce labels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源