论文标题

在Kagome磁铁YMN6SN6中操纵狄拉克带曲率和动量依赖的G因子

Manipulation of Dirac band curvature and momentum-dependent g-factor in a kagome magnet YMn6Sn6

论文作者

Li, Hong, Zhao, He, Jiang, Kun, Wang, Qi, Yin, Qiangwei, Zhao, Ning-Ning, Liu, Kai, Wang, Ziqiang, Lei, Hechang, Zeljkovic, Ilija

论文摘要

Zeeman效应描述了磁场中原子量子状态的能量变化。这种变化的幅度和方向取决于无量纲的Lande G因子。在量子固体中,Bloch电子状态对磁场的响应还表现出Zeeman效应,其有效的G因子理论上被预测依赖于动量。虽然通常在许多普通固体中可以忽略不计,但理论上将G因子的动量依赖性变化在许多拓扑和磁系统中大大增强。然而,众所周知,g因子的动量依赖性很难提取,并且尚未直接测量它。在这项工作中,我们报告了在Kagome磁铁YMN6SN6中强烈依赖的G因子的实验发现。使用光谱成像扫描隧道显微镜,我们在费米水平附近绘制了大型狄拉克带作为磁场的函数的演变。我们发现,不同晶格动量的电子状态表现出明显不同的Zeeman能量转移,从而产生了一个异常的G因子,该因子围绕Dirac Point峰达到峰值。我们的工作提供了通过磁场对DIRAC带曲率操纵的第一个动量分辨可视化,这原理应该与其他拓扑kagome磁铁高度相关。

The Zeeman effect describes the energy change of an atomic quantum state in magnetic field. The magnitude and the direction of this change depend on the dimensionless Lande g-factor. In quantum solids, the response of the Bloch electron states to the magnetic field also exhibits the Zeeman effect with an effective g-factor that was theoretically predicted to be dependent on the momentum. While typically negligible in many ordinary solids, the momentum-dependent variation of the g-factor is theorized to be substantially enhanced in many topological and magnetic systems. However, the momentum-dependence of the g-factor is notoriously difficult to extract and it is yet to be directly experimentally measured. In this work, we report the experimental discovery of a strongly momentum-dependent g-factor in a kagome magnet YMn6Sn6. Using spectroscopic-imaging scanning tunneling microscopy, we map the evolution of a massive Dirac band in the vicinity of the Fermi level as a function of magnetic field. We find that electronic states at different lattice momenta exhibit markedly different Zeeman energy shifts, giving rise to an anomalous g-factor that peaks around the Dirac point. Our work provides the first momentum-resolved visualization of Dirac band curvature manipulation by magnetic field, which should in principle be highly relevant to other topological kagome magnets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源