论文标题

费米液体是否受到拓扑保护?

Is Fermi liquid topologically protected?

论文作者

Suslov, I. M.

论文摘要

Volovik [1]的书包含了这一论点,可以将其视为Luttinger定理的拓扑证明。理想费米气体的绿色功能在(E,| P |)平面(E和P是能量和动量)中具有一个极。该极被认为类似于液态氦中的涡流。由于涡流在受限的扰动上是拓扑稳定的,因此可以绝热地包括相互作用(作为一系列小扰动),并观察到Fermi Gas Pole到费米液体极点的转化。在这个论点中,拓扑稳定性已经出现在理想的费米气体的水平上,这与其库珀不稳定相抵触。我们讨论了这一争议的起源。

The book by Volovik [1] contains the argument, which can be considered as the topological proof of the Luttinger theorem. The Green function of the ideal Fermi gas has a pole in the (E,|p|) plane (where E and p are energy and momentum). This pole is considered to be analogous to a vortex in liquid helium. Since a vortex is topologically stable against restricted perturbations, one can include interaction adiabatically (as a succession of small perturbations), and observe transformation of the Fermi gas pole to the Fermi liquid pole. In this argument, the topological stability arises already on the level of the ideal Fermi gas, which is in conflict with its Cooper instability. We discuss the origin of this controversy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源